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CHAPTER II

Empirical algorithms.

§2.1 Incompressible Euler and Navier–Stokes fluidodynamics.

First empirical solutions algorithms. Auxiliary friction and heat

equation comparison methods.

(A) Euler equation

Imagine an incompressible Euler fluid in a fixed volume Ω with a (C∞)–
regular boundary. The equations describing it are

(1) ∂ · u = 0, in Ω

(2) ∂tu+ u
˜
· ∂
˜
u = −ρ−1∂p− g, in Ω

(3) u · n = 0, in ∂Ω

(4) u(ξ, 0) ≡ u0(ξ), t = 0

(2.1.1)

where n denotes the external normal to ∂Ω and the “boundary condition”
(3) expresses the condition that the fluid “glides” (without friction) on the
boundary of Ω.
Given a t–independent external field g(ξ) ∈ C∞(Ω) the problem of fluido-

dynamics with fixed walls is:

(1) Given u0 ∈ C∞(Ω) with ∂ · u0 = 0, u0 · n = 0 on ∂Ω, is there a solution
t→ u(ξ, t), p(ξ, t) of (2.1.1) valid for small enough times and with u and p
of class C∞ or, at least, with continuous derivatives?
(2) Are there solutions global in time?
(3) Are such solutions unique?
(4) Under which assumptions on g and u0 can one find uniform estimates
as a function of time on the derivatives of u and p?

Obviously it would be desirable to have a positive answer to (2), (3) while
(4) would have importance in view of a consistency check with the physics
supposedly described by the equations, which we stress that have been de-
duced under the hypothesis that velocity gradients stay small.
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84 §2.1 Empirical algorithms

In this section we shall look for a heuristic and constructive algorithm
for the existence of the solutions. Given u0(ξ) we can imagine computing
u(ξ, t), for t very small, as

u(ξ, t) = u0(ξ) + u̇(ξ, 0) t (2.1.2)

However to compute u̇(ξ, 0) we need to know p. The pressure p can be
computed from (2) in (2.1.1); indeed the divergence of (2), and equation (3)
in (2.1.1), give

− ρ ∂ · (u
˜
· ∂
˜
u) + ρ ∂ · g = ∆p in Ω

∂np = −ρ [(u
˜
· ∂
˜

)u] · n+ ρ g · n in ∂Ω
(2.1.3)

which shows that p0 is determined up to a constant; note that the inhomo-
geneous Neumann problem in (2.1.3) satisfies automatically the well known
compatibility condition imposing that the integral on the boundary of ∂np
be equal to the volume integral of the datum of the problem (i.e. the l.h.s.
of the first of (2.1.3)), because of the integration theorem of Stokes.
Inserting the function p0 so computed into (2) in (2.1.1) at t = 0, we

see that we can compute u̇(ξ, 0) and that, by construction, ∂ · u̇(ξ, 0) =
0. Therefore it makes sense to define (2.1.2) and, in fact, we just found
an approximation algorithm which could even be of interest in numerical
simulations. We see also which is the mechanism permitting us to eliminate
the pressure by expressing it as a function of the velocity field.
We set, given t0 > 0, for k ≥ 1:

u(ξ, kt0) = u(ξ, (k − 1)t0) + t0 u̇(ξ, (k − 1)t0) = uk(ξ)

u(ξ, 0) ≡ u0

(2.1.4)

where

u̇(ξ, (k − 1)t0) = −1

ρ
∂pk−1(ξ, (k − 1)t0)−

− u
˜

(ξ, (k − 1)t0) · ∂
˜
u(ξ, (k − 1)t0) + g (2.1.5)

pk−1 = solution of





∆pk−1 = −ρ∂ · (u
˜ k−1 · ∂˜

uk−1) + ∂ · g Ω

∂npk−1 = −ρ(u
˜

k−1 · ∂
˜
uk−1)n+ g · n ∂Ω

and the question is whether the limit

u(ξ, t) = lim
k→∞

t0→0, kt0=t

uk(ξ) (2.1.6)

exists and gives a solution of (2.1.1).
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For the time being we shall consider the problem of the existence of the
limits a “technical” one and, therefore, we can consider that the equation
(2.1.1) is “formally solved”.

The (2.1.6) with k finite and large gives, at least in principle (because
the calculation of uk is obviously very difficult also from the point of view
of numerical solutions) an approximation algorithm for an incompressible
motion that generates evolutions that, on one hand, can be interesting by
themselves even not considering applications to fluids, and that, on the
other hand, can be considered as models for a real fluid evolution.

The approximations should become better as the “discretization time” t0
approaches 0.

Remark: the algorithm defined by (2.1.4),(2.1.5),(2.1.6) is, at times, called
the Euler algorithm: more generally this algorithm provides solutions of a
differential equation ẋ = f(x), with x(0) = x0 that, at time kt0, is given by
the recursive relation xk = xk−1 + t0f(xk−1), k ≥ 1.

(B) Navier–Stokes–Euler equation.

We look if, at least in a heuristic sense like the one analyzed in (A), a
similar treatment of the incompressible Navier–Stokes equations is possible.
The equations are

(1) ∂ · u = 0 in Ω

(2) ∂tu+ u
˜
· ∂
˜
u = −1

ρ
∂p+ g + ν∆u in Ω

(3) u · n = 0, in ∂Ω

(4) u(ξ, 0) = u0(ξ) t = 0

(2.1.7)

provided one can assume that friction between fluid and boundaries is neg-
ligible and, therefore, the fluid glides without friction along the walls of the
container.

In this case the equations are discussed exactly as in the Euler case (with
obvious modifications) and we find, therefore, an approximation algorithm
similar to (2.1.4), (2.1.5): in (2.1.5) one has to add on the r.h.s. of the
first equation the term ν∆uk−1 while the equation in (2.1.5) for ∆ pk−1

is unchanged (because ν∆uk−1 has zero divergence) and the equation for
∂npk−1 is modified by adding ν n ·∆uk−1.

Therefore there are no really new problems.

(C) Navier–Stokes equations and algorithmic difficulties.

In the applications friction against the walls is by no means negligible, to
the extent that the physically significant boundary condition is u = 0 rather
than u · n = 0.

We then call the (2.1.7) NSE–equations for the fluid in Ω while we shall
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86 §2.1 Empirical algorithms

call NS–equations for a fluid in Ω the equation

(1) ∂ · u = 0 in Ω

(2) ∂t u+ u
˜
· ∂
˜
u = −1

ρ
∂ p+ g + ν∆u in Ω

(3) u = 0 in ∂Ω

(4) u(ξ, 0) = u0(ξ) t = 0

(2.1.8)

The analysis of (2.1.8) is, however, radically different: indeed if we attempt
at determining p at time t = 0 we find

∆p = −ρ ∂ · (u
˜
0 · ∂

˜
u0) + ρ∂ · g in Ω

∂ p = −ρg + ρν∆u0 in ∂Ω
(2.1.9)

which in general will not admit a solution because it is not necessarily true
that the tangential derivatives of p, which obviously are already determined
by just the normal derivative (via the solution of the corresponding inho-
mogeneous Neumann problem), are compatible on ∂Ω with (2.1.9).
One could, for a moment, hope that the fact that u0 is not arbitrary,

being with zero divergence, implies ipso facto compatibility: but it is easy
to convince oneself that this is not the case, see (E) and problems [2.1.8],
[2.1.9] below.

This is a serious difficulty showing that we must necessarily expect that on
the boundary of Ω interesting and difficult phenomena must take place.

The first effect of the difficulty is that, on the basis of what said until now,
it does not yet allow us to give a prescription for a numerical solution of the
NS–equation with viscous adherence to the boundary.
And one can legitimately suspect that (2.1.8) is not a well posed problem:

it will certainly be necessary to interpret suitably (2.1.8) since if we interpret
it in a strict sense, in which all functions involved are C∞(Ω), it simply looks
inconsistent because it does not allow us to compute u̇, not even at t = 0
(because it is defined by an insoluble equation).
A way to proceed to develop an algorithm which, at least on a heuristic

basis, permits us to compute a solution to (2.1.8), giving at the same time
a suitable interpretation to it and bypassing the problem just met, is the
following.
Along the normal direction to ∂Ω, we imagine extending the volume Ω by

a length ε and we denote Ωε this extended volume; we suppose that the
fluid occupies it and there it verifies there the equation

∂ · u = 0 in Ωε

∂tu+ u
˜
· ∂
˜
u = −1

ρ
∂p+ g − ν∆u− σε(ξ)u in Ωε

u · n = 0 in ∂Ωε

u(ξ, 0) = u0 in Ωε

(2.1.10)
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where u0 is extended arbitrarily between Ω and Ωε, assuming that it is
extended, together with a prefixed number p of derivatives (p ≥ 2), contin-
uously and assuming also that the extension vanishes near the new boundary
∂Ωε. The function σε(ξ) vanishes inside Ω and increases rapidly from 0 to

a value σ(ε)
def
= σε with (large) average slope σ(ε)/ε. This additive term

has the interpretation of “friction” that slows down the fluid in the corridor
between ∂Ω and ∂Ωε.
The level lines of σε(ξ) will be, by their definition, parallel to ∂Ω and ∂Ωε,

the gradient of σε, denoted σ′
εn with σ′

ε such that |n| = 1, is a vector field
extending, to the layer between the two boundaries, the fields formed by
their normals (draw a picture).

One can expect that in the limit ε→ 0 the solution to (2.1.10), for which
we can apply the constructive algorithm of the preceding case (B) because
on ∂Ωε the condition u · n = 0 holds, will be such that the limit

lim
ε→0

uε(ξ, t) = u(ξ, t) ξ ∈ Ω (2.1.11)

exists and u(ξ, t) solves (2.1.8), under the further condition that σ(ε)→∞,
possibly fast enough, for ε→ 0.

Remark: If Ω has special forms, e.g. it is a cube, then it might be convenient
to take Ωε to be a torus. We shall do so below in the case of a similar simpler,
one dimensional, problem.

The algorithm (2.1.10), that we shall call “auxiliary friction algorithm” or
“friction method”, will encounter considerable numerical difficulties because
of the term σεu and of the divergence towards +∞ (for ε → 0) of σ̄ε; in
fact, for ε → 0, u̇t computed from (2.1.10) would tend to ∞, unless one
could guarantee a priori that uε → 0 when σε becomes large: and it does
so quickly enough to control the product σεuε (which appears quite difficult
a task from a mathematical viewpoint).

(D) Heat equation.

To understand better what is happening let us examine a simpler model
case. Consider the heat equation

∂tT = c ∂2
xT, x ∈ [−π, π]

T (−π) = T (π) = 0 (2.1.12)

T (x, 0) = T0(x)

If we attempted to find a solution to this equation with the preceding
method we should set

Tk = Tk−1 + t0Ṫk−1 ≡ Tk−1 + t0cT
′′
k−1 k ≥ 1 (2.1.13)
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but it is clear that, unless T ′′(±π) = 0, this will already be impossible
because T1 will not verify the boundary conditions.
And even if T ′′

0 (±π) = 0 we see that T ′′
1 (±π) 6= 0 unless T ′′′′

0 (±π) = 0.
Hence if T0(x) does not have all even derivatives vanishing in the neighbor-
hood of ±π the algorithm will not work.
The “auxiliary friction method” of (C) above, setting c = 1, would lead to

equations

Ṫ = T ′′ − σεT

T (−π − ε) = T (π + ε), T ′(−π − ε) = T ′(π + ε) (2.1.14)

T (x, 0) = T0(x)

having extended T0 arbitrarily out of [−π, π] to a periodic function (see the
comment following (2.1.11)) in [−π−ε, π+ε], and imagining to identify the
points π + ε and −π − ε, see Fig. (2.1.1) below.
If we choose σε equal to a constant σ̄ε for x ∈ [π + 2

3ε, π + ε] and to 0
for x ∈ [π, π + ε

3 ] and σε(x) = σε(−x), then we can show that the iterative
method works, in principle, at least if the initial datum T0 is regular enough
(and if σ̄ε →∞ fast enough as ε→ 0).

π π+ ε
3 π+ 2ε

3
π+ε π π+ ε

3 π+ 2ε
3

π+ε

σ̄ε

T0

σε

Fig. (2.1.1): Extension of the initial datum T0(x) to the right of π; and graph of the

auxiliary function σε between π and π + ε.

This time the problem is so simple that one can show that, if T0(x) is C∞,
and analytic in the interior of [−π, π], then the algorithm (2.1.13) converges
to the solution of the heat equation with the correct boundary conditions
(2.1.12). But the convergence of the function Tε,k(ξ, t), provided by the
algorithm at the k–th step, to a limit T (ξ, t)

T (ξ, t) = lim
ε→0

lim
k→∞
kt0=t

Tε,k(ξ) (2.1.15)

is delicate and, as a numerical algorithm, it is not very good because Ṫ risks
to become very large as ε→ 0, because σε →∞ badly affects the term σεT
in (2.1.14).

Furthermore if T0 is not analytic but, for instance, “only” C∞, the algo-
rithm may converge but, in general, it will not converge to the usual solution
of the heat equation. See below and problems [2.1.1]%[2.1.7].

An apparently better algorithm consists in transforming the equation into

Tε(ξ, t) = e−σεtT0(ξ) +

∫ t

0

e−σε(ξ)(t−τ)T ′′
ε (ξ, τ) dτ (2.1.16)
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which we can try to solve iteratively by setting

Tεk(ξ) = e−σεt0kT0(ξ) + t0

k−1∑

h=0

e−σε(ξ)(k−h)t0T ′′
ε h(ξ), k ≥ 1 (2.1.17)

This yields a numerical algorithm in which σε only appears in e−σεt, which
can be computed without involving large quantities (even when σεt is large).
Provided obviously T ′′

ε (ξ) does not become too large, which we do not ex-
pect, not at least if compared with the corresponding e−σε(ξ)t0 (the reason
is that in the well known solution of the heat equation T ′′ has, usually, a
discontinuity at the boundary but it is not infinite). See problems.

(E) An empirical algorithm for NS:

The above discussion suggests an analogous approach for (2.1.8) and (2.1.9)
and leads to the following algorithm for (2.1.10). One writes (2.1.10) as

u · n = 0 on ∂Ω, ∂ · u = 0, in Ω, u(ξ, t) = (2.1.18)

= u0(ξ)e
−σε(ξ)t +

∫ t

0

e−σε(ξ)(t−τ)(−u
˜

τ · ∂
˜
uτ −

1

ρ
∂pτ − g − ν∆ur) dτ

where uτ , pτ denote u(ξ, τ), p(ξ.τ) and one sets up the approximation algo-
rithm

uk(ξ) = u0(ξ)e
−σε(ξ)t +

k−1∑

h=0

t0e
−σε(ξ)(k−h)t0(−u

˜
h · ∂

˜
uh−

− 1

ρ
∂ph + g + ν∆uh) k ≥ 1 (2.1.19)

∆pk = −ρ ∂(u
˜

k · ∂
˜
uk) + ρ ∂ · g − uk · ∂σε in Ωε

∂npk = −ρ(u
˜
· ∂
˜
uk) · n+ ρ g · n+ ρ ν∆uk · n in ∂Ωε

where ∂σε = σ′
εn and σ′

ε has support near ∂Ωε. This algorithm does not
encounter obvious problems as σε → ∞, provided uk · n is so small that
σ′

εuk ·n remains bounded as ε→ 0 (see the last term in the second equation).
Since we expect that uk · n be of order O(ε), this seems reasonable and we
should have

u(ξ, t) = lim
ε→0

lim
k→∞
kt0=t

uk,ε(ξ) (2.1.20)

However, unlike the heat equation case, the algorithm (2.1.19) does not
eliminate completely the problem, certainly relevant for numerical calcu-
lations, that is due to the presence of quantities like uk · ∂ σε which are
products of large quantities (∂σε) times quantities (uk) that we expect to
be small (but which we do not know a priori that they are really such).
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Hence this algorithm has only a theoretical character which, rather than
solving a problem, is well suited to illustrate some of its difficulties. We
succeed in giving a meaning to a heuristic method of construction of solu-
tions, but the method remains only a matter of principle, conditioned to
the solution of an elliptic equation which may lead to a numerical stability
problems (at least).

We could ask where did go the conceptual compatibility problem, at the
origin of our worries. Obviously it is still around: indeed one should expect
that the “exact” solutions of (2.1.18) or of (2.1.10) for t > 0 small do
not verify any more the boundary conditions u = 0 on ∂Ω (that now is
an internal surface in the domain Ωε where the approximating solution is
studied). But we can hope that the violation of the property of vanishing
on the boundary ∂Ω should rapidly become, as time increases, very small
for t > 0 and tend to vanish for every prefixed value of t > 0 as ε tends to
zero, at least if σε becomes vertical enough near ∂Ω and large enough (for
ε→ 0).
The impossibility of satisfying the boundary condition at t = 0 (on ∂Ω)

implies that u̇ε will be not zero, and not even small, at t = 0 in some point
on the boundary ∂Ω but it will rapidly become very small, the earlier the
closest to 0 will ε be: and in the limit ε → 0 one should attain a limit u
which at time t = 0 does not satisfy the NS–equation, but that verifies it at
all later times t > 0.

In this way the friction model for the boundary condition clarifies how it
could be that the equation cannot be solved at t = 0 but it is solved at all
t > 0 and which is a physical mechanism that produces such a result.
Should one worry that the solution found (if found) had nothing to do with

the initial datum u0 then it should be noted that, although the initial datum
cannot be obtained as a limit from t > 0, in the sense that not all derivatives
of u, for t > 0 (time derivatives included) tend to the corresponding ones of
the initial datum1 nevertheless motion is generated from the initial datum
hence we can expect that the u tends to u0 in some sense, e.g. in L2(Ω) or
in some other sense (for instance pointwise in the internal points of Ω).

The important point to retain is that the physical meaning of the singu-
larity at t = 0 has been understood, at least as a proposal to be checked,
through a concrete model together with a description of the mechanism of
transition from t = 0, where the equation cannot be solved in general, to
t > 0 where, instead, its solubility does not meet any a priori difficulty of
principle.

The following questions become natural at this point

1 We have already seen that this cannot happen for the time derivative which, for the
initial datum, is not even defined.
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Question (Q1): Do the friction equations (2.1.10), once exactly solved for
ε > 0, really have the property of converging for ε → 0 to a solution of the
(2.1.8) (boundary conditions included) at least for t > 0.

Question (Q2): Does the algorithm (2.1.19) really converge for k → ∞,
t0 → 0, kt0 → t, to a solution of (2.1.18).

and we attempt at understanding them by referring to simpler problems in
which they already occurr.

(F) Precision of the same algorithms applied to the heat equation, (Q1).

Questions (Q1) and (Q2) will not be analyzed for the NS–equation because
of the difficulties that are involved (which, to date, are not yet solved in
the case d = 3). We can, however, analyze them in the far easier case
of the heat equation and the study is very instructive as an illustration of
mechanisms and difficulties that one can expect to find again in the case
of more ambitious theories like that of the NS–equation. Let us, therefore,
look at the problem (Q1) posed in (E) in the case of the equations (2.1.12),
(2.1.14).
We shall however suppose, for simplicity, that σε in (2.1.14), (2.1.16) is

given as a discontinuous function represented in Fig. (2.1.2) by the solid
lines rather than by the dashed lines.

π π + ε
3

π + ε

σε

σε(x)

Fig. (2.1.2) The function σε(x) in [π, π + ε], while in [−π − ε,−π] it is defined as the

mirror image: the graph is the solid line jumping from 0 at π to σε at points > π. The

dashed line refers to the smooth graph of the function previously used.

Furthermore it is convenient to use the fact that (2.1.14) satisfies periodic
boundary conditions and to translate the “potential” σε to the center of the
interval (this is done via the change of coordinates x′ = x− π − ε). In this
new representation the boundary layer of width ε is now at the center of
the interval [−π − ε, π + ε] as in the Fig. (2.1.3): half of it, namely [−ε, 0],
corresponds to the previous left boundary layer and the other half, namely
[0, ε], corresponds to the previous right boundary layer.
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−π − ε −ε ε π + ε

σε

σε(x)

x

Fig. (2.1.3) The function σε after the shift of th origin. The points −π − ε and π + ε

are identified by the periodic boundary conditions.

We shall therefore consider the equation

(1) Ṫ = T ′′ − σεT, in [−π − ε, π + ε]/{±ε}
(2) periodic boundary conditions and matching of the

values and of the first derivatives of T in ± ε (2.1.21)

(3) σε = 0 if |x| > ε and σε = σε if |x| < ε

(4) initial datum, if T0 is the datum in (2.1.14) :
ϑ0(x) = T0(x− π − ε) if x > ε, and
T0(x+ π + ε) if x < −ε and zero in |x| < ε

The exclusion of the points ±ε in the first of (2.1.21) is replaced by the
matching condition which is now posed because σε has been chosen discon-
tinuous, see Fig. (2.1.3), and the equation (2.1.12) must, as a consequence,
be somehow interpreted at the discontinuity points.2

The following proposition solves the question analogous to the (Q1), in the
case of the heat equation

1 Proposition (heat equation approximation algorithm): The heat equa-
tion, in the form (2.1.21), with ϑ0 generated (c.f.r. (4) in (2.1.21)) by a
smooth datum T0(x), say T0 ∈ C∞([−π, π]), admits a solution t→ T ε(x, t)
which for ε → 0 and σε → +∞ fast enough converges for all x ∈ [−π, π]
to a smooth solution of the heat equation (2.1.12), (described in problem
[2.1.6]).

The equation can be solved exactly: the proof can therefore be reduced to
a simple but instructive check, c.f.r. problems [2.1.1]%[2.1.7].

(G) Analysis of the precision of the algorithms in the heat equation case,
(Q2).

We now study the question (Q2) following the (2.1.20), i.e. we study
whether the algorithm (2.1.17) of solution of (2.1.16) does really gener-

2 The matching condition yields a possible interpretation: obviously it is only one of the
possible interpretations and as such it has a physical significance, that however we shall
not discuss here, given its auxiliary nature in the present context.
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ate the wanted smooth solution, i.e. the solution guaranteed by the last
proposition.
It is easy to convince oneself that this is not the case, in general, because

this is already not true in the analogous case of the problem (2.1.12) in which
the Dirichlet boundary condition is replaced by the even easier periodic
boundary condition (T (−π) = T (π), T ′(π) = T ′(−π)). In such case there
is even no need of introducing σε nor of enlarging the domain: because
the boundary conditions are respected by the algorithm (2.1.13) and the
conceptual problems discussed in (D) (following (2.1.13)) do not even arise.

Note also that the algorithms (2.1.13) and (2.1.17) coincide in this periodic
boundary conditions case.

Nevertheless the question whether the algorithm (2.1.13) does really pro-
duce the correct solution can be posed in this simpler problem (i.e. (2.1.12)
with periodic boundary conditions and C∞ periodic initial datum) and it is
clearly a simpler question than the one in (Q2) about the algorithm (2.1.19)
for the case of the NS equations with Dirichlet boundary conditions. In fact
the following proposition holds

2 Proposition: (anomaly of approximations convergence for the heat equa-
tion) Consider the equation (2.1.12) but with periodic boundary conditions
(as above) and C∞, periodic, initial datum. Let, for k ≥ 1

Tk = T0 + ct0

k∑

h=1

T ′′
k−h, ←→ Tk − Tk−1 = c t0 T

′′
k−1 (2.1.22)

Let ω = 2πk with k integer and let T̂0(ω) be the Fourier transform of T0(x)
then
(i) if, for τ, b, η > 0, it is |T̂0(ω)| < τe−b|ω|2+η

(implying, among other
things, that T0 is analytic entire in x) the sequence (2.1.22) converges to
the usual, well known, solution T (x, t) of (2.1.12) for t0 → 0,
(ii) in general T̂k(ω) has a lmit T̂ (ω, t) as k → ∞ with kt0 → t, for every
ω
(iii) unless the condition in (i) on the Fourier transform holds it is not in
general true that Tk(x)−−−−−−−−→

kto→t, t0→0
T (x, t).

proof: The Fourier transform of Tk can be computed as

T̂k(ω) = T̂k−1(ω)(1− cω2t0) = T̂0(ω)(1− cω2t0)
k (2.1.23)

where ω = 2πn with n integer > 0.
Hence (writing t0 = t

k ) we see that

T̂k(ω)−−−−−−−→
kt0=t

k→∞,t→0

e−c ω2tT̂0(ω) (2.1.24)
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But this does not mean that Tk(ξ)→ T (ξ, t), where T is the “usual” solution
of (2.1.12) with Fourier transform given by the r.h.s. of (2.1.24). One
sees this immediately if T0 has support [−a, a] strictly contained in [−π, π],
(a < π). In this case it is clear (from (2.1.22)) that Tk will remain identically
zero in the set where it initially was zero with all its derivatives (i.e. outside
of [−a, a]), hence it cannot be analytic for t > 0 (while T (x, t) is analytic).
Convergence is, however, guaranteed if

|(1− cω2 t

k
)kT̂0(ω)| ≤ γt(ω) and

∑

ω

|γt(ω)| <∞ (2.1.25)

with the series of the |γt(ω)| uniformly converging in t for t in an arbitrarily
prefixed bounded interval. It is easy to see that this happens if, and essen-
tially only if (see problems [2.1.10], [2.1.11]), T̂0(ω)→ 0 as fast as τe−b|ω|2 ,
or faster, for τ, b > 0: at least if t is small enough and even for all times if the
decay in ω is faster (e.g. as assumed in hypothesis in (i) of the proposition).

Therefore to make the method work strong regularity properties must be
imposed on T0(x): it must be more regular than an entire analytic function
of x (simple analyticity would “just” demand that the Fourier transform
decays exponentially, i.e. as τe−b|ω| for some τ, b > 0 but the above proof
would not work).

(H) Comments:

(1) A fortiori, we must expect that very strong regularity conditions have
to be imposed upon u0, besides imposing suitable properties on the values
of u and of its derivatives on the boundary ∂Ω (c.f.r. the remark following
(2.1.13)), so that the algorithm (2.1.19) could converge to the correct solu-
tion of the NS–equation (which, unlike the heat equation, has not yet been
shown to even admit a solution).
(2) However the regularity conditions could, in the end, simply reduce to

analyticity properties of u0 and of the boundary ∂Ω of Ω (whose regularity
also influences that of p0 hence of u̇0 and u, via the Neumann problem,
(2.1.3)).
Unfortunately the problem is open, at least if d = 3, and it is not even

known whether under conditions of this type the NS equation admits a
solution which is well defined and keeps, in general, a regularity comparable
to that of the initial data for all times t > 0.
(3) Note that the proposition is in apparent contradiction with the theory

of the heat equation. Usually one says that the heat transport equation
in a conducting rod, with fixed temperature at the extremes (equal to 0
or to each other in the above examples) and with regular initial datum
“admits a unique solution”. The solutions that we construct as limits of
the approximations with time step t0 starting from an initial datum which,
for instance, is of class C∞ and vanishes outside an interval [−a, a] with
a < π, and is analytic inside (−a, a) are, in some sense, solutions of the
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heat equation for a rod [−a, a]3 Such solutions, regarded as functions on
[−π, π] vanish outside [−a, a] hence they are not C∞ in [−π, π] (in general
they will have discontinuous first derivatives at ±a, to say the least).

(4) In other words the key to the uniqueness theorem lies in the requirement
that T is really at least once differentiable with continuous derivatives on
the whole interval [−π, π] and for all times t ≥ 0. Obviously one could take
the alternative view of calling solutions of the heat equation the limits of
sequences of discretized equations: in this case we could possibly have an
existence and uniqueness theorem once the discretized approximation is fixed
(possibly under additional conditions on the initial datum) but the solutions
would be (in general) different from the “classical” solutions.4 Furthermore
the solution provided by the limit of a sequence of discretized equations may
depend on which discretized equation is chosen (i.e. on which algorithm of
approximation is used).

(5) One thus sees that rather deep interpretation problems arise here, which
cannot be solved on a purely mathematical ground: to understand which is
the correct meaning to give to a “solution” in physically interesting cases
or applications it is necessary to go back to the physical properties that the
equation translates into a mathematical model.

It is possible that the physical interpretation requires one or another solution
depending on the physical origin of the problem. It is clear that, if such
considerations already apply to a simple equation like the 1–dimensional
heat equation, with greater reason they will be relevant for equations like
the Euler or Navier–Stokes equations and lead to exposing major existence
problems. In general uniqueness problems for partial differential equations
are delicate both physically and mathematically: even in cases in which
one usually says that there are “no problems” (as one says, for instance,
for the heat equation). This shows, once again, that dogmatic attitudes on
notions like existence of solutions, or uniqueness, only lead to failure to see
the existence of interesting problems.

(6) The real importance of the above analysis, already for the heat equa-
tion, is shown by the fact that it makes at least less convincing the paradox
that claims the incompatibility of the heat equation with special relativity:
heat “waves” can apparently travel with infinite speed and “an initial da-
tum with support in a finite region will evolve, by the heat equation, into a
datum which does not vanish at an arbitrary distance”.

This is, to say the least, a hasty conclusion because, if one defined “solu-
tion” what is obtained as limit of the above described Euler algorithm, one
would instead find a solution that not only does not have infinite velocity
but which in fact does not propagate at all (because as we have seen it
will remain nonzero only where it was so initially). This is obviously only
one more argument beyond the well known one that remarks that the heat

3 I do not know a reference for detailed analysis of this property.

4 Which, when the initial data are at least C1–functions, by definition are those of class
C1 in [−π, π] and t ≥ 0.
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equation is a phenomenological macroscopic equation derived from assump-
tions that involve non relativistic ideas and notions (like the “radius of the
molecules” which appears in the conductivity coefficient c (see [1.1.5]) and
which, alone, would invalidate the “paradoxical” infinite speed propagation
of heat “predicted” by the heat equation.
(7) Conclusion: the algorithms discussed in this section are interesting

for the conceptual difficulties that they illustrate and for the multiplicity
of aspects that they bring up on the theory of fluids. They have limited
usefulness for applications, if not none at all.

Problems: Well posedness of the heat equation and other remarks.

[2.1.1]: Consider the eigenvalue problem associated with (2.1.14):

T ′′ − σεT = −λ2T, in [−π − ε, π + ε] (∗)

and show that for |x| > ε the eigenvector T has the form Aeiλx +Be−iλx while for |x| < ε

it has the form α cosh
√
σε − λ2 x+ β sinh

√
σε − λ2 x.

[2.1.2] Find the matching conditions determining λ for the eigenvalue problem in [2.1.1].
(Idea: If A+, B+ and A−, B− are the coefficients of the same solution x > ε or x < −ε
then the periodicity condition imposes, for each η

A+e
iλ(π+ε+η) +B+e

−iλ(π+ε+η) = A−e
iλ(−(π+ε)+η) +B−e

−iλ(−(π+ε)+η)

Hence: A− = A+e2iλ(π+ε), B− = B+e−2iλ(π+ε).
To simplify we study only eigenfunctions which are even in x (which suffices to study
the (2.1.14) with an even initial datum: T0(x) = T0(−x)). The parity condition means:

A+e2iλ(π+ε)e−iλx +B+e−2iλ(π+ε)eiλx = A+eiλx +B+e−iλx i.e. B+e−2iλ(π+ε) = A+.
Thus for x ≥ 0 the even eigensolution with eigenvalue λ will have the form

T (x) = A (eiλx + e2iλ(π+ε)e−iλx) x > ε

T (x) = α cosh
√
σε − λ2 x |x| < ε (∗∗)

with suitable A,α. Hence the matching condition will be

A (eiλε + e2iλ(π+ε)−iλε) = α cosh
√
σε − λ2 ε

iλA (eiλε − e2iλ(π+ε)−iλε) = α
√
σε − λ2 sinh

√
σε − λ2 ε

so that the eigenvalue λ is determined by

1 + e2πiλ

1− e2πiλ
≡ i cotg πλ =

λi√
σε − λ2

coth ε
√
σε − λ2 (∗ ∗ ∗)

The odd eigenfunctions are treated similarly.)

[2.1.3]: Show that if the eigenvalues associated with the even eigenfunctions of (*) are
labeled, as λ increases, by 0, 1, 2, . . . it is

λn =

(
n+

1

2

)
+O (εn) , n ≤ λn ≤ n+ 1 with n integer
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if σεε2 ≡ E−−−→ε→0 ∞. (Idea: It suffices to draw the graph of both sides of (***), paying

attention to distinguish the cases σε > λ2 and σε < λ2).

[2.1.4]: Show that the square of the L2–norm of Tn(x),
∫ π+ε

−π−ε
|Tn(x)2dx, is

|A|2 4π (1 +
sin 2πλn

2πλn
) + ε|α|2(1 +

sinh 2
√
E − ε2λ2

n

2
√
E − ε2λ2

n

)

so that if Tn is normalized to 1 in L2 it is |A2| < 1/8π for n ≥ 1 (noting that for n ≥ 1 it
is λn ≥ 1). Show also that |Tn(x)| ≤ C for some n–independent C. (Idea: The matching
conditions in [2.1.3] imply

∣∣ α
A

∣∣ ≤





min

(
2/| cos ε

√
λ2

n − σε|, 2/
√
λ2

n − σε| sin ε
√
λ2

n − σε|
)

if σε < λ2
n

min

(
2/ cosh ε

√
σε − λ2

n, 2/
√
σε − λ2

n sinh ε
√
σε − λ2

n

)
if σε ≥ λ2

n

so that for n ≥ 1 (i.e. for λn ≥ 1) we see that |α/A| ≤ 4.)

[2.1.5]: Check that [2.1.3], [2.1.4] imply that Tn(x), normalized in L2, can be written
as

Tn(x) =
(eiλnx − e−iλnx +O(εn))

normalization
=

1√
π

sin(n+
1

2
)x+O(εn), x > ε

Show also that the results in [2.1.4] agree with the corresponding results for the equation
T ′′ = −λ2T in [0, 2π] with boundary conditions T (0) = T (2π) = 0, which yield eigen-

values λ2
n = −n2

4
with eigenvectors π−1/2 sin nx

2
. (Idea: Note that the two problems are

equivalent if one thinks of [−π, π] and [0, 2π] as of two identical circles and if the point
x = π in the first case is identified with the point x = 0 = 2π of the second case: with
this change the odd order eigenfunctions for the problem in [0, 2π] become the even ones
for the problem in [−π, π] (and viceversa)).

[2.1.6]: Show that the solution of (2.1.21) with initial data ϑ0 even in x and as in
(2.1.21) can be written, for t > 0, in terms of the eigenfunctions analyzed in problems
[2.1.1]%[2.1.4] as

Tε(ξ, t) =

∞∑

k=1

e−λ2
k

t〈Tk, ϑ0〉Tk(x)

where 〈T, T ′〉 ≡
∫ π+ε

−π−ε
T (x)T ′(x) dx: see (2.1.21) for the definition of ϑ0.

[2.1.7]: Suppose that ϑ0 is even in x. Show that the results of [2.1.4] imply

〈Tk, ϑ0〉 −→
ε→0
〈Tk, T̃0〉, where T̃0 is the limit limε→0 ϑ0(x) and Tk are the eigenfunctions

of the problem

T ′′ = −λ2T, in [−π, π]/{0} with periodicity 2π

T (0) = 0
(a)

i.e. for x > 0

Tk(x) =
1√
π

sin

(
k +

1

2

)
x, λ̄k = k +

1

2
(b)
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Furthermore check that: λk −→
ε→0

λk and λ2
k ≥ C λ

2
k for each k, |ε| < 1, if C is suitably

chosen. Infer from this that

Tε(ξ, t)−−−→ε→0 T (ξ, t) =

∞∑

k=1

e− λ
2

kt〈Tk, T̃0〉Tk(x) (c)

and that the limit T (ξ, t) solves the heat equation on [−π, π]/{0} with boundary condition
T (0) = 0 at x = 0. Check that this easily leads to a solution of the problem (2.1.12)
because (2.1.12) can be interpreted as the above “translated” by π. (Idea: By [2.1.4] the

terms of the series for Tε(ξ, t) can be estimated by a constant times e−λ2
nt and obviously

〈Tk, T0〉Tk(x) converges to the corresponding value in the expression for T (ξ, t).)

[2.1.8]: Consider, in the case d = 2, a solenoidal nonconservative force g ∈ C∞(Ω) and

let γ = ∂Ω be such that I =
∫

γ
g ·dx 6= 0. Show that in this case (2.1.9) is not, in general,

soluble if the initial datum is u0 = 0. Find an example. (Idea: Let Ω be a disk of radius

r and let g(x)
def
= ω∧x with ω = ωe orthogonal to the disk. Then the normal component

of g on γ is 0 so that the uniqueness of the solutions for the Neumann problem implies

that p = const hence ∂p = g = 0 but I = 2πr2ω).

[2.1.9]: Consider a velocity field in the half space z ≥ 0 with components

u1 = −y χ(z) f(x2 + y2), u2 = xχ(z) f(x2 + y2), u3 = 0

where χ(z) = z per z ≤ h, h > 0 prefixed, and χ(z) ≡ 0 for z > 2h, while f(r2) = 0 for
r > R, with R > 0 prefixed. Show that u has zero divergence but (2.1.9) is no soluble,
for χ, f generic. (Idea: Note that ∆u = χ(z) (8f ′ + 4r2f ′′)(−y, x, 0), if r2 ≡ x2 + y2 and
z < h. Hence u and ∆u both vanish on the boundary z = 0. Furthermore

−∂ · (u
˜
· ∂
˜
u) ≡ σ(z2, r2) ≡ (f(r2)2 + 2f(r2)f ′(r2) r2)χ(z)2

Hence (assuming g = 0) the gradient ∂p of p vanishes on z = 0 and the corresponding

Neumann problem can be solved by the method of images. The potential p is then the
electrostatic potential generated by a charge distribution σ with cylindrical symmetry
around the z–axis and with center at the origin and with reflection symmetry across the
plane z = 0.
The at large distance the electric field can be computed, to leading order, in R−1 and
one sees that its component tangential to the plane z = 0 does not vanish and it has

order R−4 if
∫
r2σ(r2, z2)r dr dz 6= 0 (in electrostatic terms one can say that the electric

field is dominated at large distance by the lowest nonzero dipole moment which is in the
present case the quadrupole, yielding therefore a field proportional to R−4). Check that
the dipole moment is identically zero, for any f and χ, beginning with the remark that

σ ≡ χ2 ∂r2f2

∂ r2 .)

[2.1.10]: Consider the heat equation in [−π, π], Ṫ = T ′′, with periodic boundary

conditions and analytic initial datum T0(x) with Fourier transform T̂0(ω), ω = 0,±1, . . .;

hence there are constants τ, b > 0 such that |T̂0(ω)| ≤ τe−b|ω|. Show that the L2–

norm of (1 − ω2t/k)kT̂0(ω) may diverge as k → ∞ although for each ω one has (1 −
ω2t/k)kT̂0(ω)−−−−→

k→∞
e−ω2tT̂0(ω), c.f.r. (2.1.25). This implies that in general even if T0

is analytic the method of approximation in (2.1.22) does not converge to the solution
neither in the sense of L2 nor pointwise and staying uniformly bounded. (Idea: Take

T̂0(k) ≡ τe−b|ω| and estimate the sum
∑

ω
(1 − ω2t/k)2kτ2e−2b|ω| by the single term

with ω2t = 3k.)

[2.1.11]: In the context of [2.1.10] show that even if T̂0(ω) = τe−bω2
still one cannot

have L2 convergence of Tk(x) for all times t > 0. (Idea: Same as previous.)

Bibliography: [Bo79].
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§2.2 Another class of empirical algorithms. Spectral method.

Stokes problem. Gyroscopic analogy.

A method substantially different from the one discussed in §2.1 is the “cut–
off ” or “spectral” method. The name originates from the use of the repre-
sentation of u on the basis generated by the Laplace operator on Xrot (Ω),
c.f.r. (1.6.16): it is, therefore, a method associated with the spectrum of
this operator.

(A) Periodic boundary conditions: spectral algorithm and “reduction” to an
ordinary differential equation.

We shall first examine a fluid occupying the d–dimensional torus T d, i.e. an
incompressible fluid enclosed in a cubic container with periodic boundary
conditions (“opposite sides identified”).
In this case the velocity and pressure fields, assumed regular, will admit a

Fourier representation which can be regarded, obviously, as the expansion
of the fields on the plane waves basis or, equivalently, on the basis generated
by the eigenvectors1 of the Laplace operator on T d, i.e.

u(ξ, t) =
∑

k

ûke
ik·ξ, p(ξ, t) =

∑

k

pke
ik·ξ (2.2.1)

where k = 2πL−1n with L= side of the container and n is a vector with
integer components. We adopt the following convention for the Fourier
transforms

u(x) =
∑

k

eik·xûk, û(k) = L−d

∫

T d

e−ik·xu(x) dx

||u||22 ≡ |u|22 ≡ ||u||L2(T d) = Ld
∑

k

|ûk|2 =

∫

T d

|u(x)|2 dx
(2.2.2)

The incompressibility condition (i.e. zero divergence), in the case d = 3,
requires that for k 6= 0

ûk = γ1
k e

1
k + γ2

k e
2
k ≡ γ

k
(2.2.3)

where e1k, e2k are two unit vectors orthogonal to k. In the case d = 2 it must

be û = γkk
⊥/|k|, if k = (k1, k2) and k⊥ = (k2,−k1).

1 We consider in this section only real vector fields: nevertheless it is occasionally conve-
nient to express them in terms of complex plane waves rather than using the sines and
cosines waves. We shall not discuss further this matter of notation.

2/febbraio/2007; 19:36



100 §2.2: Spectral Algorithm

We consider only incompressible Euler and NS equations in which the
applied external force g(ξ) has zero average L−d

∫
g(ξ) dξ = 0: this is to

exclude that the center of mass of the fluid accelerates uniformly (note that
with periodic boundary conditions the center of mass will move as a body
of mass equal to that of the fluid subject to the sum of the volume forces);
hence

∂t

∫
ρu dξ = ρ

∫
g dξ = 0 (2.2.4)

and, possibly changing reference frame, it is not restrictive to suppose∫
u dξ = 0. Likewise we can fix the arbitrary additive constant in the

pressure so that
∫
p dξ ≡ 0.

With such conventions and hypotheses we can rewrite the (2.2.1) as

u(ξ, t) =
∑

k 6=0

γ
k
(t)eik·ξ, p(ξ, t) =

∑

k 6=0

pke
ik·ξ (2.2.5)

and the Euler or NS equations become ordinary equations for the compo-
nents γ

k
of the field u. To write them explicitly remark that

u
˜

(ξ) · ∂
˜
u(ξ) =

∑

h,k

ei(h+k)ξ(γ
˜h · ik˜

) γ
k

(2.2.6)

Furthermore define, for k 6= 0, the operator Πk of orthogonal projection of
R3 on the plane orthogonal to k by

(
∏

k
w)i = wi −

w · k
k2 ki (2.2.7)

and note the following obvious identity

γ
˜ k

1
· k
˜ 2γk

2

≡ (γ
˜ k

1
· k
˜ 2)

∏
k
1
+k

2

γ
k
2

+ (γ
˜ k

1
· k
˜ 2)(1−

∏
k
1
+k

2

)γ
k
2

(2.2.8)

Consequently we see that the partial differential equations

∂ · u = 0 , u̇+ u
˜
· ∂
˜
u = −ρ−1∂p+ g + ν∆u (2.2.9)

can be written as the ordinary differential equations

γ̇
k

= −νk2γk − i
∑

k
1
+k

2
=k

(γ
˜ k

1
· k
˜ 2)

∏
k
γ

k
2

+
∏

k
ĝ

k

pk = −ρ
∑

k
1
+k

2
=k

1

k2 (γ
˜ k

1
· k
˜ 2)(k · γk

2

)− iρ

k2 ĝk
· k

(2.2.10)

Therefore the pressure “disappears” and the equations for the “essential
components” of the fields describing our system become

γ̇
k

= −νk2γk − i
∑

k
1
+k

2
=k

(γ
˜ k

1
· k
˜ 2)

∏
k
γ

k
2

+ ĝ
k
, γ

k
(0) = γ0

k
(2.2.11)
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having assumed that Πkĝk
≡ ĝ

k
, since the gradient part of ĝ

k
, (i.e. the

component of ĝ
k

parallel to k), can be included in the pressure, as we see

from the second of the (2.2.10). To the (2.2.11) we must always add the
reality condition for u, i.e. γ

k
= γ

−k
: we shall always assume such relation,

c.f.r. footnote 1 above.

The Euler equations are simply obtained by setting ν = 0.

If ν > 0 the friction term gives rise to very large coefficients as k2 → ∞
and therefore it will possibly generate problems in solution algorithms. It
is therefore convenient to rewrite (2.2.11) as

γ
k
(t) = e−νk2tγ0

k
+

∫ t

0
e−νk2(t−τ)

(
ĝk − i

∑

k
1
+k

2
=k

(γ
˜ k

1
(τ) · k

˜ 2)
∏

k

γ
k
2

(τ)
)
dτ

(2.2.12)
in which we see that the friction term is, in fact, a term that can help
constructing solution algorithms, because it tends to “eliminate” the com-
ponents with |k| ≫ 1/

√
ν i.e. the “short wave”components, also called the

“ultraviolet” components, also called the “short wave” components of the
velocity field.
Note that (2.2.12) suggests naturally a solution algorithm

γ(n)
k

= e−νk2tγ0
k

+ t0

n−1∑

m=0

e−νk2t0(n−m)
(
ĝ

k
− i

∑

k
1
+k

2
=k

γ
˜

(m)

k
1

· k
˜ 2 Πkγ

(m)
k
2

)

(2.2.13)
where the γ(m) are computed in mt0; and therefore

lim
n→∞
nt0=t

γ(n)
k

= γ
k
(t) (2.2.14)

should be a solution of the equation.
This proposal can be subject to criticism of the type analyzed in the pre-

ceding §2.1 and we can expect that it might be correct only under further
regularity hypotheses on u0, i.e. on γ0.

The (2.2.13) requires summing infinitely many terms. For concrete applica-
tions it is therefore necessary to find an approximation involving only sums
of finitely many terms. One of the most followed methods it to introduce a
ultraviolet cut–off: this means introducing a parameter N (the cut–off) and
to constrain k, k1, k2 in (2.2.12), or in (2.2.11), to be ≤ N .
Thus one obtains a system of finitely many ordinary equations and their

solution γN
k

(t) should tend to a solution of the NS equations in the limit

N →∞.
In the case of equation (2.2.13) with ultraviolet cut–off N we denote the

approximate solution γ
(n)N
k (t) and in the limit N →∞, n→∞, nt0 = t one
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shoud get a solution of the NS equations. The order in which the above lim-
its have to be taken should have no consequences on the result, or it should
be prescribed by the theory of the convergence: but it is not a priori clear
that the limit really exists, nor that the solution to the equation is can be
actually built in this way.

The simplicity of this algorithm, compared to those of §2.1 should be as-
cribed mainly to the boundary conditions that we are using. The algorithm
name of spectral method will become more justified when we shall generalize
it to the case of non periodic boundary conditions.
The algorithm has a great conceptual and practical advantage which makes

it one of the most used algorithms in the numerical solutions of the Euler or
NS equations. Unlike the method in §2.1 this algorithm makes manifest that
viscosity appears explicitly as a damping factor on the velocity components
with large wave number and rather than appearing as a “large” factor (∼
νk2) it appears as a “small” factor (∼ e−τk2ν).

(B) Spectral method in a domain Ω with boundary and the boundary condi-
tions problem.

We shall now build a cut–off algorithm also in the case of a bounded domain
Ω with a (smooth) boundary.
We note that the real reason why we succeed at “exponentiating” terms

containing viscosity is that the velocity field has been developed in eigen-
functions of the Laplace operator which is the operator associated with the
linear viscous terms of the NS–equation.
The case of periodic boundary conditions has been very simple, because

in absence of boundary it is possible to find a basis for the divergenceless
fields u which is at the same time a basis of eigenvectors for the Laplace
operator ∆ appearing in the friction term. In presence of a boundary it
will not in general be possible to find eigenvalues of the Laplace operator
which have zero divergence and which at the same time also vanish on the
boundary (i.e. there are no eigenvectors, in general, of the Laplace operator
with Dirichlet boundary conditions and zero divergence).
However if we define the “divergenceless Laplace operator” as the operator

on Xrot defined by the quadratic form on X0
rot (c.f.r. §1.6, (1.6.16))

D(u) =

∫

Ω

(∂ u
˜

)2 dx (2.2.15)

one can show the following theorem (c.f.r. the problems at the end of the
section where the proof is described)

Theorem (spectral theory of the Laplace operator for divergenceless fields):
In the space Xrot , (c.f.r. (1.6.16)), there is an orthonormal basis of vectors
satisfying:
(1) uj ∈ C∞(Ω) ,

∫
Ω
ui · uj = δij
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(2) ∂ · uj = 0 in Ω
(3) there is µj ∈ C∞(Ω) and λj > 0 such that: (2.2.16)

∆uj − ∂ µj = −λ2
juj in Ω

(4) uj = 0 in ∂Ω
(5) there are constants α, c, c′, ck > 0 such that

c j2/d ≤ |λj | ≤ c′ j2/d, |∂kuj(x)| ≤ ckjα+k/d (2.2.17)

for all x ∈ Ω, if d = 2, 3 is the space dimension.

Then each divergenceless datum u ∈ Xrot (Ω) will be written as

u(ξ, t) =

∞∑

j=1

γj(t)uj(ξ) (2.2.18)

and therefore we can express in terms of the γj the results of the actions on
u of the operators appearing in the Euler and Navier–Stokes equations.
If Πgrad and Πrot = 1 − Πgrad are the projection operators on the spaces
X⊥

rot = Xgrad and on Xrot , c.f.r. §1.6, the actions of the Laplace operator
and of the nonlinear transport operator are respectively

∆u =

∞∑

j=1

−λ2
j γjuj(ξ)− ∂

( ∞∑

j=1

µj(ξ)γj

)

u
˜
· ∂
˜
u =

∞∑

j1,j2=1

γj1 γj2 u˜ j1
· ∂
˜
uj2 = (2.2.19)

=

∞∑

j1,j2=1

γj1 γj2Πrot
(
u
˜ j1
· ∂
˜
uj2

)
+

∞∑

j1,j2=1

γj1 γj2Πgrad

(
u
˜ j1
· ∂
˜
uj2

)

and the NS–equation becomes, if we set
∏

grad

(
u
˜ j1
· ∂
˜

)
uj2
≡ ∂ πj1j2 ,

γ̇j =− νλ2
jγj −

∞∑

j1,j2=1

γj1γj2

〈
(u
˜ j1
· ∂
˜
uj2), uj

〉
+ gj

ρ−1p =− ν
∞∑

j=1

µj(ξ) γj −
∑

j1j2

γj1γj2 πj1j2(ξ)

(2.2.20)

where
〈
·, ·

〉
denotes the scalar product 〈f, g〉 =

∫
Ω
f(x)g(x) dx. The (2.2.20)

can be written

γj(t) = e−νλ2
j tγ0

j +

∫ t

0

e−νλ2
j (t−τ)

(
gj −

∞∑

j1,j2=1

γj1(τ)γj2(τ)C
j1j2
j

)
dτ

C j1 j2
j =

∫

Ω

(u
˜ j1
· ∂
˜
uj2) · uj dξ ≡

〈
(u
˜ j1
· ∂
˜
uj2), uj

〉
(2.2.21)
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This shows that also in the case in which Ω has a boundary it is still possible
to write the NS–equations so that viscosity appears as a “smallness” factor
rather than as a “large” additive term.
One can also derive a discretization of the Euler equations by setting ν = 0

in (2.2.21). However the boundary condition is now u · n = 0 rather than
u = 0 and therefore we cannot expect that the series for u =

∑∞
j=1 γjuj

is “well” convergent because, otherwise, this would imply u = 0 on the
boundary, since uj = 0 on the boundary. It would therefore not be a good
idea to use the basis above to represent solutions of the Euler equations in
the same domain.
This is a general problem because the Euler and NS–equations are studied,

usually, by imposing different boundary conditions. The limit ν → 0 in
which, naively, the NS–equations should “reduce” to the Euler equations
must be a singular limit and the convergence of the solutions of the NS–
equations to solutions of the Euler equation when ν → 0 must be quite
improper near the boundary ∂Ω, where interesting surface phenomena will
necessarily take place. Of course the case of periodic boundary conditions
is the remarkable exception.
The (2.2.20),(2.2.21) can be treated as the analogous (2.2.10) and (2.2.12)

and reduced, with an ultraviolet cut–off to a finite number of equations,
generating a general spectral algorithm.

(C) The Stokes problem.

One calls “Stokes problem” the NS–equation linearized around u = 0, c.f.r.
the problems of §1.2

u̇ =− ρ−1∂p+ ν∆u+ g, ∂ · u = 0 in Ω

u = 0, in ∂Ω

u|t=0 =u0 ∈ Xrot (Ω)

(2.2.22)

and we look for C∞(Ω×(0,+∞))–solutions that for t→ 0 enjoy the property
u→ u0 at least in the sense of L2(Ω) (see footnote 1 in (E) of §2.1), i.e. in
the sense that the mean square deviation of u from u0, i.e.

∫
|u − u0|2 dx,

tends to zero with t). We shall take, to simplify, g = 0.

The theorem in (B) above allows us to obtain a complete solution of the
problem. Indeed we develop u0 on the basis u1, u2, . . ., c.f.r. (2.2.16)

u0(x) =

∞∑

j=1

γ0
j uj(x) (2.2.23)

and we immediately check that the solution is

u(x, t) =

∞∑

j=1

γ0
j e

−νλ2
j tuj(x), p(x, t) = −νρ

∞∑

j=1

γ0
j e

−νλ2
j tµj(x) (2.2.24)
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From the properties (1)%(5) of the theorem in (B) above it follows that
u ∈ C∞(Ω× (0,+∞)) and that ∂ · u = 0 for t > 0.
It is easy to see that this solution is unique. One also realizes the strict

analogy with the heat equation of which the Stokes equation can be regarded
as a “vectorial” version.
In particular it can happen that, if u0 ∈ Xrot (Ω) but u0 does not have

a series representation like (2.2.23) with coefficients γ0
j rapidly vanishing

as j → ∞ (for instance because u0 ”does not match well” the boundary
conditions so that all we can say is that

∑
j |γ0

j |2 < ∞), then ν∆u0 could
differ from a field vanishing on the boundary by more than we might expect,
i.e. by an amount that is not “just” the gradient of a scalar field p: in fact
the Neumann problem that should determine p is over determined and it can
turn out to be impossible to solve it, as in the cases discussed in §1.6, §2.1
in connection with examples of the same pathology for the heat equation.
The pathology manifests itself only at t = 0 and it can be explained as

in the heat equation case (via a physical model for the boundary condition
as given, for instance, by the auxiliary friction method in (C) of §2.1).
Obviously in (2.2.22) this problem shows up only at t = 0: if t > 0 in fact
the (2.2.24) show that the boundary condition is strictly satisfied: and the
over determined Neumann problem for p becomes necessarily compatible and
has the second of the (2.2.24) as a solution, which at t = 0 might no longer
make sense because of the possibly poor convergence of the series.

(D) Comments:

(1) Note that the spectral method for the NS–equations induces us into
believing that at least for t > 0 the boundary condition is satisfied by
the solutions (if existent): one could expect that friction implies that the
coefficients γj(t) tend to zero for j →∞ much faster than they do at t = 0,

thanks to the coefficients e−λ2
jν(t−τ). Hence the series (2.2.18) should be well

convergent and, therefore, its sum should respect the boundary conditions
which are automatically satisfied term by term in the series.
(2) However we shall see that the argument just given, which is essentially

correct in the case of the heat equation (discussed in §2.1) and in the Stokes
equation case, becomes now much more delicate and, mainly, if d = 3, it is
no longer correct, basically because of the non linear terms in the transport
equations: c.f.r. the analysis in §3.2.

(E) Gyroscopic analogy in d = 2.

The NS equations in d = 2–dimensions can be put in a form that closely re-
minds us of the rigid body equations of motion. The NS–equations, (2.2.10),
with g = 0 for simplicity, can be written in terms of the scalar observables

γk
1
, γk

2
, γk

3
, related to the vector observable γ

k
via the γ

k
= γk k

⊥/|k|
because, if d = 2, the zero divergence property allows us to express γ

k
in
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terms of scalar quantities γk:

γ
k

= γk
k⊥

|k| , γk = − γ−k, if k⊥ = (k2,−k1), k = (k1, k2)

(2.2.25)
If k1 + k2 + k3 = 0 we then note that the equations (2.2.10) can be written

γ̇k
1

= −νk2
1γk

1
− i

{
γk

2
γk

3

(k⊥2 · k3)(k
⊥
3 · k⊥1 )

|k1||k2|k3|
+ (2↔ 3)

}
+ ..

γ̇k
2

= −νk2
2γk

2
− i

{
γk

3
γk

1

(k⊥3 · k1)(k
⊥
1 · k⊥2 )

|k1||k2||k3|
+ (1↔ 3)

}
+ ..(2.2.26)

γ̇k
3

= −νk2
3γk

3
− i

{
γk

1
γk

2

(k⊥1 · k2)(k
⊥
2 · k⊥3 )

|k1| |k2| |k3|
+ (1↔ 2)

}
+ ..

Note the symmetry properties

k⊥1 · k2 = k⊥2 · k3 = k⊥3 · k1
def
= a(k1, k2, k3) (2.2.27)

with a(k1, k2, k3) ≡ −a where a is ± twice the area of the triangle formed
by the vectors k1, k2, k3 (it is a symmetric function under permutations of
k1, k2, k3). The sign is + if the triangle k1k2k3 is circled clockwise and −
otherwise.
Keeping this symmetry into account together with the relations

k⊥1 · k2 = −k⊥2 · k1, k3 = −k1 − k2

k⊥1 · k⊥2 ≡ k1k̇2, hence, for instance,

k⊥2 · k⊥3 − k⊥1 · k⊥3 = k2
1 − k2

2

(2.2.28)

one finds (patience is required)

γ̇k
1

= −νk2
1γk

1
− i(k2

3 − k2
2) ã γk

2
γk

3
+ . . .

γ̇k
2

= −νk2
2γk

2
− i(k2

1 − k2
3) ã γk

1
γk

3
+ . . . (2.2.29)

γ̇k
3

= −νk2
3γk

3
− i(k2

2 − k2
1) ã γk

1
γk

2
+ . . .

where ã = a(k1, k2, k3)/|k1| |k2| |k3|.
These equations are analogous to those for the angular velocity of a solid

with a fixed point. The analogy becomes even more clear in the variables
ωk = γk/|k| which obey the equations

k2
1 ω̇k

1
= −k4

1ν ωk
1
+ (k2

2 − k2
3) a i ωk

2
ωk

3
+ . . . etc (2.2.30)

We see also an interesting property: namely every triple or “triad” k1, k2, k3

such that k1 + k2 + k3 = 0 contributes to the equations (2.2.30) in such a
manner that, if the γ

k
relative to the other values of k (different from
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±k1,±k2,±k3) were zero, the equations would describe the motion (with
friction) of a “complex” (because the ωk are complex quantities) gyroscope.

Hence Euler equations can be interpreted as describing infinitely many
coupled gyroscopes, each associated with a triad such that k1 +k2 +k3 = 0:
they are not independent and their coupling is described by the constraint
that, if a vector k is common to two triads, then the ωk’s, thought of as
components of one or of the other gyroscope, must be equal (because ωk

depends only upon k and not on which of the (infinitely many) triads the
vector k it is regarded to belong to).
The motions of a complex gyroscope are not as simple as those of the ordi-

nary gyroscopes, not even in absence of friction (ν ≡ 0), and we understand
also from this viewpoint the difficulty that we shall meet in the qualitative
analysis of the properties of the solutions of the equations.
Note, finally, that the single complex gyroscope (i.e. described by the equa-

tions relative to a single triad) may admit motions that can be interpreted as
motions of a system of “real” gyroscopes, even though writing ωk = ρke

iϑk

with ρk, ϑk real one finds that in general the phases ϑk are not constant.
It is indeed easy to see that if the phases of the initial datum have special

values then the phases remain constant and the ρk obey equations that
are exactly like those obeyed by the three components of the three angular
velocities of an ordinary gyroscope (hence in absence of friction they can be
integrated by “quadratures”). For instance this happens if ϑj ≡ −3π/2, see
also (4.1.27) in §4.1.

(F) Gyroscopic analogy in d = 3.

A gyroscopic analogy is possible, c.f.r. [Wa90], also in the d = 3 case and
it is based on the same identities introduced between (2.2.26) and (2.2.29)
and on the new notion of elicity. We sketch it quickly here, leaving the
details to the interested reader. In the case d = 3, with g = 0, given k
we introduce, [Wa90], two complex mutually orthogonal unit vectors hs(k),
s = ±1, also orthogonal to k

hs,k = v0(k) + is v1(k), s = ±1 (2.2.31)

where v0, v1 are two mutually orthogonal real unit vectors orthogonal to
k and, furthermore, such that v0(−k) = v0(k) and v1(−k) = −v1(k). In
this way hs,k = h−s,k = hs,−k. Suppose, moreover, that the three vectors
v0, v1, k form a counterclockwise triple.
The basis h−1,k, h+1,k in R3 will be called the elicity base and we shall say

that the vector hs,k has elicity s. Then the Fourier components γ
κ

of an
arbitrary divergenceless velocity field υ can be written as

γ
k

=
∑

s=±1

γk,s hs,k (2.2.32)

where γk,s are scalar quantities such that γk,s = γ−k,s.
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The NS–equations (2.2.10) become

γ̇k
3
,s3

= −νk2
3 γk

3
,s3
−

− i
∑

k
1
+k

2
+k

3
=0

γk
1
,s1
γk

2
,s2

[hs1,k
1
· k2] [hs2,k

2
· hs3,k

3
] (2.2.33)

The expression [hs1,k
1
· k2] [hs2,k

2
· hs3,k

3
] can be studied by noting that

the vector e−isµhs can be obtained by rotating clockwise by µ the basis
v0(k), sv1(k): this remark allows us to reduce the calculation of this product
to the same calculation in the planar case (d = 2).

Given the triangle k1, k2, k3 and the elicities s1, s2, s3 and having estab-
lished a Cartesian reference system on its plane, so that the triangle k1k2k3

is circled clockwise, we can find three angles µ1, µ2, µ3 such that the clock-
wise rotation by sjµj of the basis v0(kj), sjv1(kj) brings it into a basis

ṽ0(kj), ṽ1(kj) with ṽ0(kj) directed as the axis k⊥j orthogonal to kj and lying
in the plane of the triangle and with components (on this plane) (−kj2, kj1)
if kj = (kj1, kj2). Then

[hs1,k
1
· k2] [hs2,k

2
· hs3,k

3
] = e−iµ̃ k

⊥
1 · k2

|k1|
( k⊥2 · k⊥3
|k2| |k3|

− s2s3
)

(2.2.34)

where µ̃ = s1µ1 + s2µ2 + s3µ3; and we see that we can use the expressions
already obtained in the case d = 2. If a is defined by setting a = −k⊥1 · k2

(twice the area of the triangle formed by the vectors kj) and if µ = −π
2 +

s1µ1 + s2µ2 + s3µ3 and ωs,k = |k|−1γk,s then by the identities noted in
(2.2.27) and (2.2.28) one gets

k2
1 ω̇k

1
,s1

= −k4
1ν ωk

1
,s1
−

− (k2
3 − k2

2 + (s ∧ κ)1κ1 σ) a e−iµ ωk
2
,s2
ωk

3
,s3

+ . . . etc
(2.2.35)

where σ = s1s2s3 and κ, s are defined by κ = (|k1|, |k2|, |k3|) and s =
(s1, s2, s3): which shows that, once more, the equations can be written in
terms of triads as in the case d = 2. It is therefore still possible to give a
“gyroscopic” interpretation to the Euler and NS equations.
The 2–dimensional equations can be obtained from the (2.2.35) simply by

eliminating the labels sj from the ω and setting σ = 0, because in this case
the vectors v1 have to be replaced by 0.
We see, furthermore, that if ∆ denotes the triad (k1, s1), (k2, s2), (k3, s3)

then the quantities

E =
1

6

∑

∆

∑

k,s∈∆

|k|2|ωk,s|2, Ω =
1

3

∑

∆

∑

k,s∈∆

|k|4|ωk,s|2 (2.2.36)

are constants of motion in the case ν = 0, g = 0 and d = 2; in this case
the index s should not be present, but we have used the three dimensional;
notation for homogeneity purposes.
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The first quantity is proportional to the kinetic energy and the second is
proportional to the enstrophy2 (i.e. to the total vorticity). The quantities
E,Ω are sums of positive quantities and we shall see how this property
will make them particularly useful in obtaining a priori estimates on the
solutions of the Euler and NS equations.

Remark the mechanism by which the 2–dimensional fluids conserve energy
and enstrophy: it is the same by which a solid with a fixed point conserves
energy and angular momentum: here k2

1, k
2
2, k

2
3 play the roles of principal

inertia moments.
In the corresponding case d = 3 the energy E is still conserved (because
s∧ κ · κ = 0) while, since in general

∑
i κ

2
i (s∧ κ)iκi 6= 0, the Ω is no longer

a constant of motion.
Nevertheless in the case d = 3, always with ν = 0, g = 0, there is another

constant of motion because the identity

(
s3|k3|(k2

3 − k2
1) + k2

3(s2|k2| − s1|k1|)
)
+

+
(
s2|k2|(k2

1 − k2
3) + k2

2(s1|k1| − s3|k3|)
)
+

+
(
s1|k1|(k2

3 − k2
2) + k2

1(s3|k3| − s2|k2|)
)
≡ 0

(2.2.37)

together with (2.2.35) implies that

Ω̃ =
1

3

∑

∆

∑

k,s

s |k| |γk,s|2 (2.2.38)

is a constant of motion (as it can also be directly seen from the Euler
equations by remarking that such quantity is proportional to

∫
u ·∂ ∧u dx).

However Ω̃ cannot be directly used in a priori estimates because it is the
sum of quantities with sign not defined.

Remarks:

(1) Note that there can be velocity fields in which all the components have
elicity s = 1 (or all s = −1); it then follows from the (2.2.35) that, given
K > 0, there exist solutions of the Euler equations having the form u(x) =∑

α,|k
α
|=K eik·xckh+(k) where kα denotes here the component α, α = 1, 2, 3,

of the vector k (which, therefore, has all the components with modulus equal
to K). Note in fact that in this case it is s∧ κ ≡ 0 besides k2

i = 3K2 hence
k2

i − k2
j = 0.

(2) If we consider the NS equation (i.e. ν 6= 0) in absence of external field
the solutions in (1) are either identically zero or vanish exponentially.
(3) In presence of an external field which also has Fourier components g

k

which do not vanish only for kα ≡ K one can find an exact, non zero, time
independent solution.

2 From εν (“inside”) and στρεϕω (“turn around”).
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Problems: interior and boundary regularity of solutions of elliptic

equations and for Stokes equation.

Here we mainly present the theory of the Laplace operator on divergenceless
field in a bounded convex region Ω with smooth boundary. The key idea
that we follow is to reduce the problem to the case of in which Ω is instead
a torus, where the problem is easy. This is an intuitive and alternative
approach with respect to the classical ones, see for instance [Mi70], [LM72],
[Ga82].

[2.2.1]: (weak solutions) Define a function x, t → T (x, t) to be a weak solution with
periodic boundary conditions on [a, b], of the heat equation, (2.1.12), “in the sense of the
periodic C∞(a, b)–functions belonging to a set P of such functions dense in L2([a, b])” if
the function T is in L2([a, b]) and if furthermore

∂t

∫ b

a

ϕ(x)T (x, t) dx−
∫ b

a

ϕ′′(x)T (x, t) dx = 0, for all ϕ ∈ P

We say that the initial datum of a weak solution is ϑ0 if it is:
∫ b

a
ϕ(x)ϑ0(x) dx =

limt→0

∫ b

a
ϕ(x)T (x, t) dx for each ϕ ∈ P.

For instance P can be the set of all C∞([a, b]) and periodic functions: we say, in such
case, that T is a solution “in the sense of distributions” in the variable x on the circle
[a, b]. If P is the space of the trigonometric polynomials periodic in [a, b] we say that T
is the solution in the sense of trigonometric polynomials on [a, b].
We say that a sequence fn ∈ L2([a, b]) tends weakly to f ∈ L2([a, b]) in the sense P if

limn→∞

∫ b

a
ϕ(x)fn(x)dx =

∫ b

a
ϕ(x)f(x)dx for each ϕ ∈ P.

Show that the heat equation on [a, b] admits a unique weak solution in the sense of
trigonometric polynomials (hence in the sense of distributions) for a given initial datum
ϑ0 ∈ C∞(a, b).
Extend the above notions (when possible) to the case of functions on a d–dimensional
bounded domain Ω. (Idea: Choose a = −π, b = π (for simplicity) and write the condition
that T is a solution by choosing ϕ(x) = eiωx, with ω integer.)

[2.2.2]: (weak solutions and heat equation) Let ϑ0 be a C∞–function with support in
[−a, a], a < L/2. Show that the algorithm (2.1.23) for the heat equation on a circle of
length L (identified with the segment [−L/2, L/2]) produces a solution that converges
weakly in the sense of trigonometric polynomials to the solution of the heat equation
with periodic boundary conditions on [−L/2, L/2]. Compare this result with [2.1.10],

[2.1.11]. (Idea: Let ϑ̂0(ω), with ω integer multiple of 2πL−1, be the Fourier transform
of the initial datum; and note that the Fourier transform of the approximation at time

t = kt0, with t0 > 0 and k integer, is ϑ̂k(ω) = ϑ̂0(ω)(1 − cω2t
k

)k, c.f.r. §2.1. The weak

convergence becomes equivalent to the statement that ϑ̂k(ω) tends, for each fixed ω and

and for k →∞, t0 → 0 (with kt0 = t), to ϑ̂0(ω)e−cω2t.)

[2.2.3]: (Weak solutions ambiguities) In the context of [2.2.1] we see that the algo-

rithm of [2.2.2], c.f.r. (2.1.23), produces a sequence of functions ϑ̂k(ω) with Fourier
transform ϑt0 (x, t), t ≡ kt0, periodic on [−L/2, L/2] which, thought of as an element
of L2([−L/2, L/2]) converges weakly in the sense of the trigonometric polynomials to
a solution T (x, t) of the heat equation on [−L/2, L/2]. Note that this happens for any
L > a: i.e. in a sense the algorithm produces different weak solutions depending on which
is the length of the periodic bar that we imagine to contain the initial heat. Convince
oneself that this is not a contradiction, and that on the contrary it is a useful example to
meditate on the caution that has to be used when considering the notion of weak solution

[2.2.4]: (extension of a function to a periodic function with control of its L2 norm)
Given u ∈ C∞

0 (Ω) we can extend it to a C∞–periodic function on a cube TΩ with side
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L > 2 diam Ω containing Ω and, as well, a translate Ω′ of Ω such that Ω′ ∩ Ω = ∅. The
extension can be done so that the extension vanishes outside Ω and Ω′ and, furthermore,
on the points of Ω′ has a value opposite to the one that it has in the corresponding points
of Ω. Then the extension, which will be denoted by ũ, has a vanishing integral on the
whole TΩ. Show that, (by the definition of D, c.f.r. (2.2.15))

∫

Ω

|u(x)|2 dx ≡ 1

2
|ũ|22 ≤

L2

8π2
D(ũ) =

L2

4π2
D(u) per u ∈ X0

rot

(Idea: Write the “norm”, i.e. the square root of the integral of the square, of the extension
of u to L2(TΩ) and the value of D(ũ) by using the Fourier transform and remarking that
2||u||2

L2(Ω)
≡ ||u||2

L2(TΩ)
, and treat in a similar way D(ũ).)

[2.2.5]: (a lower bound for the Dirichlet quadratic form of a solenoidal vector field) Given

a convex region Ω with analytic boundary ∂Ω consider the space Xrot ≡ X0
rot closure in

L2(Ω) of the space X0
rot of the divergenceless fields vanishing in a neighborhood of the

boundary. Consider the quadratic form (u, v)D (called the “Dirichlet form”) associated
with the Laplace operator:

(u, v)D =

∫

Ω

∂u
˜
· ∂ · v

˜
dx, and set D(u) =

∫

Ω

(∂u
˜

)2 dx

defined on X0
rot . Show that the greatest lower bound of D(u)/|u|22 on X0

rot is strictly

positive. Show that it is in fact ≥ (2πL−1)2 if L is twice the side of the smallest
square containing Ω. (Idea: Note that the infimum is greater or equal to the infimum of∫

Q
(∂
˜
u)2/

∫
Q
u2 over all C∞ periodic fields u defined and with zero average on a square

domain Q containing Ω. Indeed every function in C∞
0 (Ω) can be extended trivially, see

[2.2.4], to a periodic function ũ ∈ C∞(Q) and if Q has side L one can obviously also
request that it has zero average (by defining it as opposite to u in the points of the “copy”
Ω′ of Ω that we can imagine contained in Q and without intersection with Ω): write then
D(ũ) by using the Fourier transform.)

[2.2.6]: (bounding in L2 a solenoidal field with the L2 norm of its rotation) Show that
in the context of [2.2.4] it is

|u|22 ≤
L2

4π2

∫

Ω

(rot u)2 dξ, in X0
rot

(Idea: Make use again of the Fourier transform as in [2.2.4], [2.2.5] and note that ∂ · ũ = 0

implies that |k|2|ˆ̃u(k)|2 = |k ∧ ˆ̃u(k)|2, and furthermore |u|22 = 1
2
|ũ|22 ≤ 1

2
L2

4π
D(ũ) =

L2

4π
D(u).)

[2.2.7]: (“compactness” of Dirichlet forms) Let un ∈ X0
rot be a sequence such that

|un|2 = 1 and D(un) ≤ C2, for some C > 0, and show the existence of a subsequence of
un converging in L2 to a limit. (Idea: Imagine un continued to a function ũ defined on
TΩ and changed in sign in Ω′, as in [2.2.4], [2.2.5], [2.2.6]. Then the hint of [2.2.6] implies

|ˆ̃un(k)| ≤ C
|k|

√
2

Ld , with the convention (2.2.2) on Fourier transform. Let {ni} be a

subsequence such that ˆ̃uni
(k)−−−−→i→∞

ˆ̃u∞(k) , ∀ k (which exists because k takes countably

many values); we see that given an arbitrary N > 0:

4|uni
− unj

|22 ≡ |ũni
− ũnj

|2L2(TΩ) = Ld
∑

k

|ˆ̃uni
(k)− ˆ̃unj

(k)|2 ≤

≤ Ld
∑

|k|≤N

|ˆ̃uni
(k)− ˆ̃unj

(k)|2 +
Ld

N2

∑

|k|>N

|k|2|ˆ̃uni
(k)− ˆ̃unj

(k)|2 (2.2.39)

−−−−−→i,j→∞ ≤ 2

N2
supD(ũni

) ≤ 4C2

N2
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hence the arbitrariness of N implies that uni
is a Cauchy sequence in L2(TΩ), hence in

L2(Ω), which therefore converges to a limit u∞ ∈ Xrot .)

[2.2.8]: (existence of a minimizer for the Dirichlet form on solenoidal vector fields)
Let un ∈ X0

rot , n ≥ 1, be a sequence such that there is a u0 for which

|un|2 ≡ 1 , D(un)→ inf
|u|2=1, u∈X0

rot

D(u) ≡ λ2
0, |un − u0|2 → 0 (2.2.40)

Show that D(un−um)−−−−−−→n,m→∞ 0 hence, since
√
D(u) is a metric, u0 is in the “domain

of the closure of the quadratic form”,3 i.e. there is also the limit D(u0) = limn→∞D(un)

and D(u0) = λ2
0. In other words the quadratic form (extended to the functions of its

domain reaches its minimum value in u0).
Note that if the “surface” D(u) = 1 is interpreted as an “ellipsoid” in L2(Ω) then the
search of the above infimum is equivalent to the search of the largest u (in the sense

of the L2–norm) on the surface such that D(u) = 1: this is λ−1
0 u0 so that u0 has the

interpretation of direction of the largest axis of the ellipsoid and λ−1
0 that of its length.

Finally note that strictly analogous results can be derived for the quadratic form D1(u) =

D(u) +
∫
Ω
|u|2 dx. (Idea: Note the remarkable quadrangular equality:

D

(
un + um

2

)
+D

(
un − um

2

)
=
D(un)

2
+
D(um)

2
−−−−−−→n,m→∞ λ2

0

and note that 1
2
|un +um|2−−−−−−→m,n→∞ 1 and deduce that lim infn,m→∞D

(
un+um

2

)
≥ λ2

0

and, hence, 1
2
D(un − um)→ 0.)

[2.2.9]: (recursive construction of the eigenvalues of the Dirichlet form on solenoidal
fields) In the context of [2.2.8], define λ1 > 0 as

λ2
1 = inf

|u|2=1

u∈X0
rot

, and 〈u,u
0
〉L2

=0

D(u)

and show that there is a vector field u1 ∈ L2(Ω) such that D(u1) = λ2
1, then define λ2

2
etc. In the geometric interpretation of [2.2.8] u1 is the direction of the next largest axis

of the ellipsoid and λ−1
1 is its length. Show also that (u0, u1)D = 0. (Idea: Repeat the

construction in [2.2.8]. Then remark that if w = xu0 + yu1 then D(w) ≡ x2λ2
0 + y2λ2

1 +
2(u0, u1)Dxy = 1 is an ellipse in the plane x, y with principal axes coinciding with the x
and y axes.)

[2.2.10]: (minimax principle for solenoidal fields) Consider the nondecreasing sequence
λj , j = 0, 1, 2, . . . constructed in [2.2.9] and show the validity of the following “minimax
principle”:

λ2
j = min maxD(u)

where the maximum is taken over the normalized vectors that are in a subspace Wj , with

dimension j+1, of the domain of the closure (see footnote 3) of D(u), while the minimum

3 The domain of a quadratic form defined on a linear subspace D of a (real) Hilbert
space H consists in the vectors u for which one can find a sequence un ∈ D with
||un − um|| −−−−−−→n,m→∞ 0 and D(un − um)−−−−−−→n,m→∞ 0: in such case the sequence D(un)

converges to a limit ℓ and we set D(u)
def
= ℓ, and the set of such vectors u is called

the domain of the closure of the form or simply the “domain of the form”. If u, v
are in the domain of the form D one can also extend the “scalar product” (u, v)D =(
D((u+ v))−D(u)−D(v)

)
/2.
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is over the choices of the subspaces Wj . Find the simple geometric interpretation of this
principle in terms of the ellipsoid of [2.2.8], [2.2.9]. Note that in the minimax principle
we can replace the j + 1–dimensional subspaces of the domain of the form with the
j+1–dimensional subspaces of X0

rot, provided we replace the minimum with an infimum.
(Idea: The principle is obvious by [2.2.8] in the case j = 0 and it is an interpretation of
[2.2.9] in the other cases.)

[2.2.11]: (minimax and bounds on eigenvalues of the solenoidal Dirichlet form) Con-
sider the sequence λj(Ω), j = 0, 1, . . . constructed in [2.2.9],[2.2.10] and consider the
analogous sequence associated with the quadratic form D(u) defined on the fields u of
class C∞(TΩ) periodic and with zero divergence on the cube TΩ, defined in [2.2.4]. De-
noting λj(TΩ) the latter, show that λj(Ω) ≥ λj(TΩ) and limj→∞ λj(Ω) = +∞. Likewise

we can get upper bounds on the eigenvalues λ2
j (Ω) by comparing the quadratic form D

with the corresponding one on T ′
Ω, a cube contained in the interior of Ω with periodic

boundary conditions. (Idea: Make use of the minimax principle of [2.2.10] and note that
every function in X0

rot (Ω) can be extended to a function on TΩ. For the limit note that

λj(TΩ) are explicitly computable via a Fourier transform. To obtain the lower bound we
extend linearly and continuously in the Cp topology for each p the periodic functions on
T ′
Ω to functions X0

rot(Ω
′) defined on a slightly larger domain Ω′ with smooth boundary

containing the cube T ′
Ω and contained in Ω keeping control of the L2 norms of ∂u

˜
: see

problems [2.2.33], [2.2.34] and [2.2.35] for more details.)

[2.2.12]: Show that if H is the closed subspace spanned (in L2(Ω)) by the vectors uj

then in the domain of the closure of the form D orthogonal to H there cannot exist w 6= 0.
(Idea: If w belonged to the domain of the closure of the form one would find, proceeding

as in [2.2.8], a vector u such that D(u) = infD(w) = λ
2
< ∞, with the infimum taken

over all vectors in the domain of the form and orthogonal to H: this contradicts that

λj →∞ as j →∞; in other words we would have forgotten one element of the sequence
uj .)

[2.2.13]: (heuristic equation for the eigenfunctions of the solenoidal Dirichlet form)
Write the condition that D(u) is minimal in the space of the divergenceless C∞–fields
which vanish on the boundary of Ω and are normalized to 1 in L2(Ω), assuming that the
vector field u which realizes the minimum exists and is a C∞–function. Show that it
verifies

∆u = −λ2u− ∂µ

where µ is a suitable function. (Idea: One can use the Lagrange multipliers method to
impose the constraint ∂ · u = 0).

[2.2.14]: Show that the function µ in [2.2.13] can be determined via the projection
PX⊥

rot
(∆u), where PX⊥

rot
is the projection operator discussed in (F) of §1.6 (i.e. it is

the function whose gradient is the gradient part of the gradient–solenoid decomposition
of the field ∆u).

[2.2.15]: Show that [2.2.13],[2.2.14] imply that we should expect that the vectors of the
basis un satisfy the equations

∆un =− λ2
nun − ∂µn, ∂ · u = 0 in Ω

un =0, in ∂Ω

for a suitable sequence of potentials µn.

[2.2.16]: Let f ∈ C∞([0, H]), show that

|f(0)|2 ≤ 2(H−1||f ||22 +H||f ′||22)
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(Idea: Write f(0) = f(x) +
∫ 0

x
f ′(ξ) dξ, and average the square of this relation over

x ∈ [0, H], then apply Schwartz’ inequality).

[2.2.17]: Let f ∈ C∞
0 (Ω× [0, H]) be the space of the f(x, z) of class C∞ and vanishing

if x is close to the boundary (assumed regular) ∂Ω of Ω. Show that

∫

Ω

|f(x, 0)|2 dx ≤ 2(H

∫

Ω

∫ H

0

|∂xf |2 dx dz +H−1

∫

Ω

∫ H

0

|f |2 dx dz)

(Idea: Apply the result of [2.2.16]).

[2.2.18]: (a “boundary trace” theorem) Let f ∈ C∞(Ω), show that there is C > 0 such
that, if L is the side of the smallest cube containing Ω:

∫

∂Ω

|f(x)|2 dσ ≤ C(L−1||f ||22 + L||∂f ||22)

This is an interesting “trace theorem” on the boundary of Ω (a “Sobolev inequality”),
[So63]. The constant C can also be chose so that it i invariant under homotety (in
the sense that dilating the region Ω by a factor ρ > 1 the constant C does not change
and, therefore, C depends only on the geometric form of Ω and not on its size). (Idea:
Make use of the method of partition of the identity in [1.5.7],[1.5.8] to reduce the present
problem to the previous ones).

[2.2.19] (Traces) Let Ω be a domain with a bounded smooth manifold as boundary ∂Ω:
i.e. such that ∂Ω is covered by a finite number N of small surface elements each of which
can be regarded as a graph over a disk δi tangent to ∂Ω at its center ξi ∈ ∂Ω, so that the
parametric equations of σi can be written z = zi(ξ), ξ ∈ δi and the points x of Ω close
enough to σi can be parameterized by x = (ξ, zi(ξ) + z) with ξ ∈ δi, z ≥ 0. Note that if
Ω has the above properties also the homothetic domains ρΩ with ρ ≥ 1 have the same
properties and the σi can be so chosen that diam(σi) = cL if L is the diameter of Ω and
N, c are the same for all domains ρΩ with ρ ≥ 1.

Let f ∈ C∞(Ω) and define ∂α ≡ ∂|α|

∂
α1
1

...∂
αd
d

and

||f ||2W n(Ω) =

n∑

j=0

L2j−d
∑

|α|=j

∫

Ω

|∂αf(x)|2 dx

||f ||2W n(σi)
=||fδi

||W n(δi)
, ||f ||2W n(∂Ω) = max

i
||fδi
||W n(δi)

where fδi
(ξ) = f

(
x(ξ, zi(ξ))

)
. Check that problem [2.2.18] implies

||f ||W n−1(∂(Ω)) ≤ Γ ||f ||W n(Ω), n ≥ 1

and the constant Γ can be taken to be the same for all domains of the form ρΩ, ρ ≥ 1

[2.2.20] (A “trace” theorem) Given a scalar function f ∈ L2(Ω) suppose that it admits

generalized derivative up to the order n included, with n even. Hence (−∆)n/2 exists in

a generalized sense, because |〈f, (−∆)n/2g〉| ≤ C||g||2 for g ∈ C∞
0 (Ω) and for a suitable

C, c.f.r. §1.6, (1.6.19) and problem [2.2.1] above. Suppose n > d/2.
Show that f is continuous in every point in the interior of Ω, together with its first j
derivatives if n− d/2 > j ≥ 0. Find an analogous property for n odd.
(Idea: Let Qε be a cube entirely contained in Ω and let χ ∈ C∞

0 (Qε). The function
χf ≡ fχ thought of as an element of L2(Qε) admits generalized derivatives of order ≤ n
and (−∆)n/2fχ exists in a generalized sense (this is clear if n/2 is an integer because

χ∂pg =
∑p

j=0
∂j(χ(j) g) where χ(j) are suitable functions in C∞

0 (Qε)).

Hence thinking of g ∈ C∞
0 (Qε) as a periodic function in Qε we see that there is a
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constant CQε such that the relation |〈fχ, (−∆)n/2g〉| ≤ CQε ||g||L2(Qε) holds for each

g ∈ C∞
0 (Qε), and therefore it must hold for each periodic C∞(Qε)–function g. Then,

if f̂χ(k) is the Fourier transform of fχ as element of L2(Qε) (so that k = 2πε−1m with

m an integer components vector), we get εd
∑

k
|f̂χ(k)|2|k|2n ≤ C2

Qε
. Hence, setting

n = d
2

+ j + η with 1 > η > 0, we see that the Fourier series of ∂jfχ is bounded above
by the series

∑

k

|k|j |f̂χ(k)| ≡
∑

k

|k|j+η+d/2|f̂χ(k)||k|−η−d/2 ≤

≤
(∑

k

|k|2n|f̂χ(k)|2
)1/2(∑

k

|k|−2η−d
)1/2

≤

≤ CQεε
−d/2(

ε

2π
)η+d/2(

∑

m

|m|−d−2η
)1/2

≡ Γdε
n−j−d/2CQε

hence f has j continuous derivatives in Qε. If n is odd one can say, by definition that
(−∆)n/2f exists if it is | < f, ∂jg > | ≤ C||g||2 for each derivative of order j ≤ n and for
each g ∈ C∞

0 (Ω); then the discussion is entirely parallel to the one in the n even case.)

[2.2.21] (An auxiliary trace theorem) Let Wn(Ω) be the space of the functions f ∈ L2(Ω)
with generalized derivatives of order ≤ n and define.
Show that the method proposed for the solution of [2.2.19] implies that, if n > j + d/2
and d(x, ∂Ω) denote the distance of x from ∂Ω, then

Lj |∂αf(x)| ≤ (
d(x, ∂Ω)

L
)−j−d/2 Γ ||f ||W n(Ω), |α| = j

and Γ can be chosen to be independent of Ω. (Idea: Let Q1 be the unit cube. Let
χ1 ∈ C∞

0 (Q1) be a function identically equal to 1 in the vicinity of the center of Q1.

Let χε(x) = χ1(xε−1) and show that the constant CQε considered in the estimates of

problem [2.2.19] can be taken equal to γLd/2ε−n||f ||W n(Ω), with γ independent from Ω.

Then choose ε = d(x, ∂Ω).)

[2.2.22] (Trace theorem) Infer from problem [2.2.19], [2.2.21] that if j < n−1−d/2 there
is a constant Γ such that ∂αf(x), |α| = j with x ∈ ∂Ω is continuous and

Lj |∂αf(x)| ≤ Γ ||f ||W n(Ω), |α| = j

(Idea: a point x ∈ ∂Ω will be in some σi, c.f.r. problem [2.2.19], and at a distance O(1)
from its boundary. Then apply problem [2.2.21].) With a little extra effort one can obtain
the “same” result under the weaker condition j < n− d/2.

[2.2.27] (a first regularity property of the eigenfunctions of the Dirichlet form: scalar
case) Let f0 ∈ L2(Ω), f0 = lim fn, ||fn||2 = 1 and D(fn) → λ2

0, where λ0 is associated
with the first of the above minimax problems (c.f.r. [2.2.10]). Show that the function f0
admits first generalized derivatives and also the generalized derivative ∆ and −∆f0 =

λ2
0f0. (Idea: For each g ∈ C∞

0 (Ω) we get, setting (f, g)D ≡
∫
Ω
∂f · ∂g dξ, that

|(fn, g)D − λ2
0〈fn, g〉|−−−−→n→∞ 0 ⇒ |(f0, (−∆− λ2

0)g|) = 0

Hence |(f0,−∆g)| ≤ λ2
0||g||2 and f0 has a Laplacian in a generalized sense, by definition

of generalized derivative, and −∆f0 = λ2
0f0.)

[2.2.28]: (smoothess of the lowest eigenfunction of the Dirichlet form) Check that under
the hypotheses of [2.2.27] the f0 is in C∞(Ω) and f0 = 0 on ∂Ω. (Idea: From (−∆f0) =
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λ2
0f0 it follows that (−∆)n/2f0 = λn

0 f0, for each n > 0 hence, by the results of [2.2.24],
[2.2.26], the f0 verifies the properties wanted. The vanishing on the boundary follows
from the trace theorem, [2.2.18], and of the fact that all the functions approximating f0
have by assumption value zero on ∂Ω).

[2.2.29]: (pointwise estimates on the derivatives of the lowest eigenfunction of the
Dirichlet form) Show that [2.2.24] and the elliptic estimates in [2.2.26] allow us to estimate

the derivatives of the eigenfunctions, normalized in L2, f0 as ||f0||Cj(Ω) ≤ ΓL−d/2 (1 +

(Lλ0)(j+d)) for all values of j.

[2.2.30]: (pointwise estimates on the derivatives of other eigenfunctions of the Dirich-
let form) Show that, by the minimax principle, and by what has been seen in the
above problems, what we have obtained for f0 applies to the other eigenvectors gen-
erated, via the minimax principle, from the Dirichlet quadratic form D(f). In particular:

||fp||Cj(Ω) ≤ ΓL−d/2 (1 + (Lλp)(j+d)) for all values of j, p.

[2.2.31]: (pointwise upper estimates on the derivatives of other eigenfunctions of the
solenoidal Dirichlet form) Adapt the theory of the quadratic form D(f) on the scalar
fields in f ∈ C∞

0 (Ω) to the theory of the form D(u) in (2.2.15) on the space X0
rot (Ω)

and deduce the theorem that leads to (2.2.16),(2.2.17). (Idea: Let f
0
∈ L2(Ω), f

0
=

lim f
n
, f

n
∈ X0

rot(Ω), ||f
n
||2 = 1 and D(f

n
) → λ2

0, where λ0 is associated with the

first of the above minimax problems (c.f.r. [2.2.10]). Show that the function f
0

admits

a generalized Laplacian ∆ and −∆f
0

= λ2
0f0

+ ∂µ0 with ∂µ0 ∈ L2(Ω). (Idea: For each

g ∈ C∞
0 (Ω), g ≡ g

rot
+ ∂γ we get, setting (f, g)D ≡

∫
Ω
∂f · ∂g dξ, that

|(f
n
, g)D − λ2

0〈fn
, g〉| −−−−→n→∞ 0 ⇒ |(f

0
, (−∆− λ2

0)g
rot

)| = 0

hence |(f
0
,−∆g)| = λ2

0|(f0
, g

rot
)| ≤ λ2

0||g||2 (because ||g
rot
||2 ≤ ||g||2 as the solenoid

gradient decomposition of L2(Ω) is orthogonal, c.f.r. Sec. 1.6.5). Hence f0 has a gen-
eralized Laplacian and Df

0
− λ2

0f0
= 0 in the space Xrot: i.e. there is µ0 such that

∂µ0 ∈ X⊥
0 (Ω) and −∆f

0
− λ2

0f0
= ∂µ0. Analogously one finds that ∆nf0 = λn

0 + ∂µn

with ∂µn in X⊥
rot(Ω) for all n > 0, etc.)

[2.2.32]: (completeness of the eigenfucnctions of the Dirichlet form): Show that the
sequence uj constructed in [2.2.9] is an orthonormal basis in Xrot(Ω) which, from [2.2.31],

is such that uj are C∞(Ω) functions with zero divergence and vanishing on the boundary

∂Ω. (Idea: If there existed w 6= 0 in X0
rot(Ω) (c.f.r. [2.2.9]) but out of the linear span

H closed in Xrot(Ω) (which here plays the role of L2 in the scalar problems treated
in the preceding problems) one could suppose it orthogonal to H: indeed λk

j (w, uj) =

(w, (−∆)kuj) = ((−∆)kw, uj) hence

|(w, uj)| ≤ ||(−∆)kw||λ−k
j , |∂ruj(x)| ≤ ΓL−d/2(1 + (Lλj)

r+d)

where the second inequality follows from [2.2.29], [2.2.30] (adapted to the non scalar case
as in [2.2.30]). Furthermore from the first of (2.2.17) we see that (w, uj) tend to zero

faster than any power in j and, also, that the series w|| =
∑

j
(w, uj)uj(x) converges

very well, so that its sum is in the domain of the closure of D (one verifies immediately

that the sum converges in the sense of the norm
√
D(u), so that by the footnote 2 we see

that w‖ is in the domain of D). This means that w−w|| = w⊥ is a vector in the domain
of the form D which does not vanish and which is orthogonal to the space spanned by
the vectors uj : which is impossible by the remark in [2.2.12].)

[2.2.33]: (estimates on the large order eigenvalues and eigenfunctions of the scalar

Dirichlet form) Show that λ2
j ≥ Cj2/d for some C > 0, i.e. find lower bound similar

to the upper bound in [2.2.11] to the eigenvalues of the quadratic form D in the scalar
case. (Idea: Let Q′ ⊂ Ω be a cube of side size 3L. It contains 3d cubes of size L. Let
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Q be the one among them which is at the center and suppose that Q contains Ω. Let
u ∈ C∞(Q) be periodic over Q and imagine it extended to the whole Q′ by periodicity
and to the whole Ω by setting it to 0 outside Q′. Let χQ be a C∞(Ω) function that
has value 1 on and near Q and vanishes near the boundary of Q′ and outside Q′. Let
w = χQu ∈ C∞(Ω).
Since ∂w = ∂ χQ u+ χQ ∂ u we see that

∫

Ω

(∂w)2dx ≤ 2

∫

Ω

(
(∂χQ)2|u|2 + χ2

Q(∂u)2
)
dx ≤ γ−1

∫

Q

(u2 + (∂u)2) dx

for γ a suitable constant. Hence if u varies in a j+1–dimensional subspace W ⊂ C∞(T )
it is

max
u∈W

∫

Q

(u2 + (∂u)2) dx ≥ γ max
u∈W

∫

Ω

(∂w)2 dx

Taking the minimum over all j + 1–dimensional spaces W ⊂ C∞(T ) we get Λ2
j (Q) ≥

λ2
j (Ω) by the minimax principle [2.2.10], if Λ2

j (Q) are the eigenvalues associated with the

quadratic form
∫

Q
(u2 + (∂u)2) dx to which the same arguments and results (including

the minimax principle) obtained above for the quadratic form
∫

Q
(∂u)2 dx apply with

the obvious changes, see [2.2.8]. The latter eigenvalues have the form (2πL−1m)2 where
m is an arbitrary integer component vector, with multiplicity 2 for each m, so that we

get the inequality λ2
j (Ω) ≤ Cj2/d and the inequality analogous to the first of (2.2.17) in

the present scalar case follows from [2.2.29]. [2.2.30] and from the latter inequality; the
analogue of the second of (2.2.17) follows from the above inequality and from [2.2.30].
Lower bounds on λj(Ω) can be obtained by the minimax principle by enclosing Ω in a
cube Q′ ⊃ Q ⊃ Ω.)

[2.2.34]: (Estimates on the large order eigenvalues and eigenfunctions of the scalar
Dirichlet form) Let Q,Q′, χQ be as in [2.2.33]. Let u be a C∞ divergenceless field periodic
on Q. Then u can be represented on Q as u = a + rotA where a is a constant vector
and A has zero divergence, is C∞(Q) and is periodic on Q. We extend A to a C∞(Q′)

divergenceless field by periodicity and set it 0 outside Q′. Then w = rot (χQ
1
2
x∧a+χQA)

extends the field u to a field in X0
rot(Ω). Check that

∫

Ω

(∂w
˜

)2 ≤ γ−1

∫

Q

(u2 + (∂
˜
u)2) dx

for some γ > 0. This implies the relations in (2.2.17), by the same argument in [2.2.33]

and by the fact that the eigenvalues of the quadratic forms
∫

Q
(u2 +(∂

˜
u)2) dx and can be

explicitly computed and shown to have the form 1+(2πL−1m)2 where m is an arbitrary
integer component vector, with multiplicity 4 for each m. (Idea: The inequality and the
determination of γ can be easily performed by writing the relations in Fourier transform
over Q of u,A.)

[2.2.35]: (bounds on the multipliers µj of the eigenfunctions of the solenoidal Dirichlet
form) Show that also the potentials µj in [2.2.15] can be bounded by a bound like the

second of (2.2.17) |∂kµj | ≤ ckj
α+k/d and estimate α, ck. (Idea: simply use −∂µj =

−∆uj + λ2
juj and then use (2.2.17).)

Bibliography: the gyroscopic analogy in d = 3 is taken from [Wa90]; the
theory of the elliptic equations and Stokes problem, is based upon [So63],

2/febbraio/2007; 19:36



118 §2.3 Vorticity algorithms, d = 2

[Mi70]. For a classical approach to the Dirichlet and Neumann problems
see also [Ga82].

§2.3 Vorticity algorithms for incompressible Euler and Navier–

Stokes fluids. The d = 2 case.

So far we tried to set up “internal approximation algorithms”: by this we
mean algorithms in which one avoids (or tries to avoid) approximating the
wanted smooth solutions with velocity fields that are singular or have high
gradients.
The interest of such methods lies in the fact that the fluid motions consid-

ered, real or approximate, are always motions in which make the hypotheses
underlying the microscopic derivation of the equations can be considered
valid.

However one can conceive “external approximation algorithms”, in which
one uses approximations that violate the regularity properties of the macro-
scopic fields, assumed in deriving the equations of motion: the regularity
properties (necessary for the phyisical consistency of the models) of the so-
lutions should (therefore) be recovered only in the limit in which the ap-
proximation converges to the solution.
Certainly such a program can leave us quite perplexed; but it is worth ex-

amining because, in spite of what one might fear, it has given positive results
in quite a few cases and, in any event, it leads to interesting mathematical
problems and to applications in other fields of Physics.
There is essentially only one method and it relies on Thomson’s theorem.

We shall examine it, as an example, in the case of a periodic container with
side size L.

Consider first d = 2. The divergence condition is imposed by representing
the velocity field υ as

u = ∂⊥A ∂⊥ = (∂2,−∂1) (2.3.1)

with A a scalar (smooth, see §1.6), and the vorticity is also a scalar

ζ = rotu = −∆A (2.3.2)

so that u = −∂⊥∆−1ζ, c.f.r. (C) in §1.7.
The Euler equations (ν = 0) or the Navier–Stokes (ν > 0) equations can

be written in terms of ζ:

{
∂tζ + u · ∂ζ = ν∆ζ + γ
u = −∂⊥∆−1ζ

(2.3.3)

where γ = rot g.
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We now assume that the initial vorticity field is singular, and precisely it
is a linear conbination of Dirac’s delta functions

ζ0(ξ) =

n∑

j=1

ωjδ(ξ − ξ0j ) (2.3.4)

i.e. we suppose that the vorticity is concentrated in n points ξ0
1
, . . . , ξ0

n
where it is singular and proportional to ωj : which we take to mean

∮

ξ0

j

u0(x) · dx = ωj (2.3.5)

if the contour turns around point ξ0
j

excluding the other ξ’s.

To find the velocity field corresponding to (2.3.4) we need the inverse of the
Laplace operator ∆ with periodic boundary conditions. The Green function
G, kernel of −∆−1, with periodic boundary conditions has the form

G(ξ, η) ≡ ∆−1
ξ η = − 1

2π
log |ξ − η|L +GL(ξ, h) ≡ G0(|ξ − η|L) + ΓL(ξ − η)

(2.3.6)
where G0(ξ − η) ≡ − 1

2π log |ξ − η| is the Green function for the Laplace
operator ∆ on the whole plane and |ξ − η|L is the metric on the torus of

side L defined by |ξ− η|2L = minn |ξi
− η

i
− nL|2; and ΓL is of class C∞ for

|η
i
− ξ

i
| 6= L and such that G(ξ, η) is L–periodic and C∞ for ξ 6= η. See

problems following [2.3.11] for a proof of this interesting property.

The function u0 = −∂⊥∆−1ζ0 has singular derivatives (for instance
rot u0 =

∑
i ωiδ(ξ − ξi

)) and therefore not only we are not in the situa-

tion in which it makes physically sense to deduce that the evolution of u0

is governed by the Euler equations but, worse, we even have problems at
interpreting the equations themselves.
Consider the Euler equation: ν = 0, and suppose that the external force γ

vanishes. In reality the interpretation ambiguity is quite trivial, in a sense,
because if we suppose that ζ(ξ, t) has the form

ζ(ξ, t) =

n∑

i=1

ωiδ(ξ − ξj
(t)) (2.3.7)

where t→ ξ
j
(t) are suitable functions, then we can find a meaningful equa-

tion that has to be verified by ξ
j
(t) in order to interpret it as a solution of

the Euler equations.
Note that (2.3.7) would be consequence of vorticity conservation because it

says that the vorticity is transported (see (1.7.14)) by the flow that generates
it, provided the initial value ζ0 of ζ is regular: since, however, ζ0 is not
regular we can think that (2.3.7) is part of the definition of solution of the
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(2.3.3) which, strictly speaking, does not make mathematical sense when ζ
is not regular.
By substitution of (2.3.7) into the Euler equations, (2.3.3) with ν = 0, we

find

n∑

i=1

ωi∂δ(ξ−ξi
(r))· ξ̇

i
−

n∑

j=1

ωj∂
⊥G(ξ, ξ

j
(t))·

n∑

p=1

ωp∂δ(ξ−ξp
(t)) = 0 (2.3.8)

i.e. setting ξ = ξ
i
(t) we get

ξ̇
i
= ∂⊥ξ

i

n∑

j=1

ωjG(ξ
i
, ξ

j
) ≡ ∂⊥ξ

i

n∑

h6=i

ωhG(ξ
i
, ξ

h
) + ∂⊥ξ ωiG(ξ, ξ

i
)|ξ=ξ

i
(2.3.9)

which has no meaning because the “autointeraction” term

∂⊥ξ G(ξ, ξ
i
)
∣∣∣
ξ=ξ

i

= − 1

2π

(ξ − ξ
i
)⊥

|ξ − ξ
i
|2

∣∣∣
ξ=ξ

i

(2.3.10)

has no meaning.
However one can think that the components of ∂⊥ξ G(ξ, ξ

i
)|ξ=ξ

i
are numbers

having the limit value for ξ → ξ
i
of an odd function of ξ − ξ

i
and that they

can, therefore, be interpreted as zero. Obviously this remark can only have
a heuristic value and it cannot change the sad fact that (2.3.9) does not
have mathematical sense.
Hence we shall define a solution of (2.3.3), with ν = γ = 0 and initial

datum (2.3.4), the (2.3.7) with ξ
j
(t) given by the solution of the equation

ξ̇
j

= ∂⊥ξ
j

∑

n6=j

ωnG(ξ
j
, ξ

n
) (2.3.11)

which coincides with (2.3.9) deprived of the meaningless term.

The entire procedure can, rightly, look arbitrary and it is convenient to
examine through which mechanisms one can imagine to approximate regular
solutions to Euler equation (ν = γ = 0 in (2.3.3)) via “solutions” of (2.3.11).
The idea is quite simple. A continuous vorticity field can be thought of as

a limit for ε→ 0 of

ζ0
ε (x) =

∑

i

ζ0
i |∆i| δ(x− xi) (2.3.12)

where ζ0
i = ζ0(xi) and the sum is over small squares ∆i, and with sides ε

and centered at points ξ
i
, of a pavement of TL.

This means that for the purpose of computing the integrals
∫
ζ0(x)f(x) dx,

at least, one can proceed by computing

lim
ε→0

∫
ζ0
ε (x)f(x) dx, for all f ∈ C∞(TL) (2.3.13)
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i.e., as it is usual to say, “the functions ζ0
ε approximates weakly ζ0” as ε→ 0.

Then we can hope that, letting the field (2.3.12) evolve as prescribed by
(2.3.11), and defining in this way a singular vorticity field ζε(x, t), one has
that

lim
ε→0

ζε(x, t) = ζ(x, t) (2.3.14)

exists in the weak sense, i.e. limε→0

∫
ζε(x, t)f(x) dx =

∫
ζ(x, t)f(x) dx, for

all functions f ∈ C∞(TL), and it is a regular function, if such was ζ0 to
begin with, verifying the (2.3.3) with initial datum ζ0.
It is therefore very interesting that the latter statement is actually true

if ζ0 ∈ C∞(TL), [MP84],[MP92]. This theorem is of the utmost interest
because it shows the very “possibility” of external approximations to the
solutions of the Euler equation.
The method can be suitably extended to the theory of the Navier–Stokes

equations, ν 6= 0, and to the forced fluid case γ 6= 0. For the moment we
supersede such extensions and, instead, we study more in detail the most
elementary properties of the equation (2.3.11).
One has to remark first that (2.3.11) can be put in Hamiltonian form; set
xi = (xi, yi)

pi =
√
|ωi| xi, qi =

ωi√
|ωi|

yi, (p, q) ≡ (p1, q1, . . . , pn, qn)

H(p, q) = −1

2

∑

h6=k

ωhωkG(ξ
h
, ξ

k
)

(2.3.15)
where ξ

h
, ξ

k
have to be thought as expressed in terms of the (ph, qh), (pk, qk).

Then we can check that (2.3.11) becomes

ṗj = −∂H
∂qj

, q̇j =
∂H

∂pj
(2.3.16)

i.e. the (2.3.11) are equivalent to the system of Hamiltonian equations
(2.3.16). If L =∞, i.e. for the equations in the whole space, H is

H(p, q) =
1

8π

∑

h6=k

ωhωk log
(∣∣∣ ph√

|ωh|
− pk√

|ωk|

∣∣∣
2

+
∣∣∣ qh

σh

√
|ωh|
− qk

σk

√
|ωk|

∣∣∣
2)

(2.3.17)
where σi is the sign of ωi.

We shall consider the case L = ∞ in more detail: but even in the latter
case the equations are difficult to solve, except in the trivial case of the “two
vortices problem” when

H =
1

4π
ω1ω2 log

[ (
p1

δ1
− p2

δ2

)2

+
(

q1

δ1
σ1 − q2

δ2
σ2

)2 ]
(2.3.18)
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with δj =
√
|ωj | and the Hamilton equations become, if ∆ is the argument

of the logarithm,

ṗ1 = −ω1ω2

2π

σ1

δ1

(
q1

σ1

δ1
− q2 σ2

δ2

)

∆
ṗ2 = +

ω1ω2

2π

σ2

δ2

(
q1

σ1

δ1
− q2 σ2

δ2

)

∆

q̇1 =
ω1ω2

2π

1
δ1

(
p1

δ1
− p2

δ2

)

∆
q̇2 = −ω1ω2

2π

1
δ2

(
p1

δ1
− p2

δ2

)

∆

so that we see that σ1δ1p1 + σ2δ2p2 = const, δ1q1 + δ2q2 = const, i.e. in
terms of the original coordinates

ω1x1 + ω2x2 = cost, ω1y1 + ω2y2 = cost (2.3.19)

and if ω1 + ω2 6= 0 we can define the center of vorticity x as

x =
ω1x1 + ω2x2

ω1 + ω2
, y =

ω1y1 + ω2y2
ω1 + ω2

(2.3.20)

If ω1/ω2 > 0 the vorticity center can be interpreted as the “center of
mass” of two points with masses equal to |ωi|: the faster vortex is closer to
the vorticity center. If ω1/ω2 < 0 then the center of vorticity leaves both
vortices located at points P1 and P2 “on the same side”. The equations
are solved by the motion in which the line P1P2 joining the two vortices
rotates with angular velocity (ω1 + ω2)/(2π∆) counterclockwise, if ∆ =
(x1 − x2)

2 + (y1 − y2)2, around the vorticity center (c.f.r. problems). The
distance

√
∆ has to be > 0 as we shall exclude initial data in which a pair

of vortices occupy the same point.

If instead ω1 + ω2 = 0 and ω
def
= ω1, the two vortices proceed along two

parallel straight lines perpendicular to the line joining them and with veloc-
ity ω/(2π

√
∆), going to the right of the vector that joins P2 to P1 if ω > 0

(and to the left otherwise), (c.f.r. problems).

In general the “problem of n vortices” with intensities ω1, . . . , ωn, and
vanishing total vorticity ω =

∑
i ωi = 0, admits, if L =∞, four first integrals

I1 =
∑

i

σi

√
|ωi|pi, I2 =

∑

i

√
|ωi|qi,

I3 =
1

2

∑

i

σi(p
2
i + q2i ), I4 = H(p, q) (2.3.21)

the I1, I2, I3 can be simply written in the original coordinates as

I1 =
∑

i

ωixi, I2 =
∑

i

ωiyi, I3 =
1

2

∑

i

ωi|ξi
|2 (2.3.22)

while I4 is given by (2.3.17). Their constancy in time follows directly from
the equations of motion in the coordinates xi, (2.3.11) with G given in
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(2.3.6), by multiplying them with ωi and summing over i, or multiplying
them by ωixi and summing over i. If L is finite only I1, I2, I4 are first
integrals (recall that if L is finite we only consider periodic boundary con-
ditions).

In general, however, such integrals are not in involution, in the sense of
analytical mechanics, with respect to the Poisson brackets (that we denote
with curly brackets as usual). With the exception of a few notable cases.

For instance {I4, Ij} = 0 simply expresses that I1, I2, I3 are constants of
motion; while {I1, I2} = 0 only if

∑
i ωi ≡ ω = 0, (because I1 only depends

on p and I2 only depends on the q, hence the calculation of the parenthesis
is easy and one sees that it yields, in fact, ω); furthermore {I3, I2} = I1 and
{I3, I1} = −I2.

On the basis of general theorems on integrable systems we must expect that
also the three vortices problem with vanishing total vorticity be integrable
by quadratures. And in fact this is a generally true property. All “con-
fined motions” (i.e. such that the coordinates of the points stay bounded as
t→∞) will in general be quasi periodic and the others will be reducible to
superpositions of uniform rectilinear motions and quasi periodic motions:
c.f.r. problems. Here the word “superposition” has the meaning of the clas-
sical nonlinear superposition that one considers in mechanics in the theory
of quadratures and of quasi periodic motions, c.f.r. [Ga99b].

The interest of the condition ω = 0 of zero total vorticity is that this condi-
tion must automatically hold if one requires that the velocity field generated
by the vortices tends to 0 at ∞ quickly (i.e. faster than the distance away
from the origin): the circulation at ∞ has indeed the value ω.

In reality also the general three vortices problem with ω 6= 0, representing
vorticity fields slowly vanishing at ∞, is integrable in general by quadra-
tures, c.f.r. problems.

Concerning the four or more vortices problems one can show, by following
the same method used by Poincaré to show the non integrability by quadra-
tures of the three body problem in celestial mechanics, that the problem is
in general not integrable by quadratures: it does not admit enough other
analytic constants of motion, [CF88b].

Finally if one considers the Euler equations in domains Ω different from the
torus and from R2 one obtains the (2.3.11) with the Green function G(ξ, η)
of the Dirichlet problem in Ω. In fact the boundary condition u · n = 0
imposes, by (2.3.1), that the potential Amust have tangential derivative zero
on the boundary of Ω and therefore it must be constant and the constant
can be fixed to be 0. Therefore A = ∆−1ζ where ∆ is the Laplace operator
with vanishing boundary condition.

In these cases, in general, only I4 is a constant of motion: the case in which
Ω is a disk is exceptional: because also I3 is, by symmetry, a constant of
motion and, therefore, in this case the two vortices problem is still integrable
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by quadratures.

Problems: Few vortices Hamiltonian motions. Periodic Green function.

[2.3.1]: (two vortices problem on a plane) Show that the equations of motion for two
vortices of intensity ω1, ω2 located at (x1, y1) and (x2, y2) are respectively

ẋ1 =− ω2 (y1 − y2)/2π∆, ẋ2 = ω1 (y1 − y2)/2π∆

ẏ1 =ω2 (x1 − x2)/2π∆, ẏ2 = −ω1 (x1 − x2)/2π∆

and deduce that setting ζ = (x1 − x2) + i(y1 − y2) it is ζ̇ =
i(ω1+ω2)

2π|ζ|2
ζ. Derive from this

the properties of the motions for the two vortices problem discussed after (2.3.20).

[2.3.2]: Suppose ω1 + ω2 6= 0, ω1, ω2 6= 0 and set c−1 =
√
|ω1 + ω2| and d−1 =√

|ω−1
1 + ω−1

2 |. Let σ1, σ2 be, respectively, the signs of ω1, ω2 and let ϑ1, ϑ2 be the

signs, respectively, of ω1 + ω2 and of ω−1
1 + ω−1

2 . Show that the transformation
(p1, p2, q1, q2)←→ (p, p′, q, q′):

p =(σ1|ω1|1/2p1 + σ2|ω2|1/2p2) c

p′ =(p1|ω1|−1/2 − p2|ω2|−1/2) d

q = (|ω1|1/2q1 + |ω2|1/2q2) c ϑ1

q′ = (σ1q1|ω1|−1/2 − σ2q2|ω2|−1/2) d ϑ2

is a canonical map. (Idea: Poisson brackets between the p, p′, q, q′ are canonical: check.)

[2.3.3]: (integrability by quadratures of two vortices planar motions) Note that in the
coordinates (p, p′, q, q′) the Hamiltonian of the two vortices problem depends only on the
coordinates (p′, q′) and it is integrable by quadratures in the region (p′, q′) 6= (0, 0), at
(p, q) fixed. Show that the action–angle coordinates (A,α) can be identified with the
polar coordinates on the plane (p′, q′):

A =
1

2
(p′

2
+ q′

2
), α = arg (p′, q′), and H(p′, q′) =

ω1ω2

4π
logA+ cost

(Idea: The map (p′, q′)←→ (A,α) is an area preserving map, hence a canonical map.)

[2.3.4]: Show that the results of [2.3.2] and [2.3.3] can be adapted to the case ω1+ω2 =
0 and study it explicitly. (Idea: For instance the map

p′ = p1 − p2, q = (q1 + q2), p = (p1 + p2)/2, q′ = (q1 − q2)/2

is canonical and transforms H into 1
4π

log(p′2 + q′2) + const. However the motions do
not have periodic components corresponding, in the preceding cases, to rotations of the
vortices around the vorticity center, which is now located at ∞.)

[2.3.5]: Show that, c.f.r. (2.3.21), {I3, I1} = −I2, {I3, I2} = I1 and {I1, I2} =
∑

i
ωi.
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[2.3.6]: (the planar three vortices problem) Given three vortices with intensity ω1, ω2,
ω3, with ωj > 0, consider the transformation (p1, p2, p3, q1, q2, q3)←→ (p, p′, p3, q, q′, q3)
of problem [2.3.2] (it is a canonical transformation in which the third canonical co-
ordinates are invariant) and compose it with the transformation of the same type
(p, p′, p3, q, q′, q3)←→ (P, p′, p′′, Q, q′, q′′) in which (p′, q′) are invariant while the trans-
formation on (p, p3, q, q3) is still built as in [2.3.2] by imagining that in (p, q) there is a
vortex with intensity ω1 + ω2 = ω12 and in (p3, q3) there is a vortex with intensity ω3.
Show that in the new coordinates (P, p′, p′′, Q, q′, q′′) the Hamiltonian is a function only
of (p′, p′′, q′, q′′) while I3 is the sum of a function of (P,Q) only and of a function of
(p′, p′′, q′, q′′) only.

[2.3.7]: (integrability by quadratures of the planar three vortices problem) Show, in the
context of [2.3.6], that the P,Q are constants of motion and the surfaces H = ε, I3 = κ
are bounded surfaces in phase space. Hence they are regular 2–dimensional surfaces
(i.e. they do not have singular points or degenerate into lower dimensional objects) then
their connected components are 2–dimensional tori (“Arnold–Liouville theorem”), see
[Ar79], and motions on these tori are quasi periodic with two frequences. The three
vortices problem, i.e. the determination of the motions of the two degrees of freedom
system obtained by fixing the values of P,Q, is therefore integrable by quadratures if
ωi > 0. This does not go on: the planar four vortices problem is not integrable by
quadratures, [CF88b].

[2.3.8]: Show that, by using the result of [2.3.4], the analysis about the three vortices
problem and its integrability by quadratures remains true in the case in which vorticities
do not have all the same sign, but are such that ω1 +ω2 6= 0 and ω1 +ω2 +ω3 6= 0. This
time, however, the surfaces I3 = κ,H = ε will not in general be bounded and, therefore,
the invariant surfaces will have the form, in suitable coordinates, of a product of a space
R1 × T 1, or R2, or T 2 and such coordinates can be chosen so that the evolution is linear
and motion will be quasi periodic only in the third case.

[2.3.9]: (integrability by quadratures of two vortices in a disk) Consider the two vortices
problem in a circular region. Show that this is also integrable by quadratures. (Idea:
This time I1, I2 are not constants of motion, but H, I3 still are (the second because of
the circular symmetry of the problem); furthermore all motions are obviously confined.)

[2.3.10]: (integrability by quadratures of two vortices in a torus) As in [2.3.9] but
assuming that the two vortices are confined on a torus (rather than moving on the
plane). Show that the two vortices move rectlinearly because the total vorticity must be
0. (Idea: Note that on the torus the velocity field u must be periodic and of the form

u = ∂⊥A with a suitable regular A, so that we can only consider vortices with total
vorticity zero. This time I3 is not a constant of motion but I1, I2 are, furthermore they
are in involution, namely {I1, I2} = 0 if {·, ·} denotes the Poisson bracket.)

[2.3.11]: (quadratures for three vortices in a torus) Show that also the three vortex
problem on the torus will be integrable outside the level surfaces of H, I1, I2 which are
not compact. (Idea: I1 and I2 are in involution, because the total vorticity vanishes on
the torus, c.f.r. [2.3.10], and they are in involution with H. Then apply Arnold–Liouville
theorem, c.f.r. [2.3.7].)

[2.3.12]: (Green’s function for periodic boundary conditions) Consider GN (x − y) =∑
|n|≤N

G0(x − y − nL) −
∑

0<|n|≤N
G0(nL), where the sum runs over the integer

components vectors n = (n1, n2) and G0 is defined after (2.3.6). Check the existence
of the limit limN→∞GN (x − y) = G(x − y), which is a periodic function of x − y with

period L in each coordinate, and which differs from G0(x− y) by a C∞–function of x, y

for x− y small with respect to L.

Check that the only singularity of G(ξ − η) occurs at ξ = η. (Idea: Note that G0(x) =

− 1
2π

log |x| and |ξ− nL| = |n|L (1 + (−2n · ξ L+ ξ2)/(nL)2)1/2; and setting ε = (−2n ·
ξ L+ ξ2)/(nL)2 one has −G0(ξ − nL) = 1

4π
log(1 + ε) + 1

2π
log |n|L.

Developing in powers of ε the latter expression becomes 1
4π

(ε− 1
2
ε2+O(ε3))+ 1

2π
log |n|L.
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So that −G0(ξ − nL) becomes:

1

4π

(
− 2

n · ξ L
|n|2L2

+
ξ2

|n|2L2
− 2

(n · ξ)2L2

(|n|2L2)2
+O(|n|−3) +

1

2π
log |n|L

)

Summing over n we note that the terms linear in ξ add up to 0. Furthermore the terms

in (n · ξ)2 have the form
∑

i,j
ninjξiξj and by symmetry we get the same result if the

latter sum is replaced by
∑

i
ξ2i n

2
i and by symmetry between the components of n we

get again the same result if we replace this by
∑

i
ξ2i n

2 = 2ξ2n2. This means that when

summing over n the contributions from the terms quadratic in ξ cancel exactly. Thus

summing over n gives the same result as summing

∑

|n|<N

[
G0(ξ − nL)−G0(nL)− ∂G0(nL) · ξ − 1

2
∂
˜
G0(nL) · ξ ξ

˜
]

which is a sum of terms of size O(|n|−3), which converges because the dimension is d = 2.
And in fact the derivatives of order α ≥ 0 with respect to ξ of the sum above are expressed

as sums of quantities which have size in n of order O(|n|−3−α) so that the limit is C∞

in the sense stated.)

[2.3.13]: Show that if |x− y|2L is defined as
∑2

i=1
(|xi − yi| modL)2, i.e. if |x− y| is

the natural metric on the torus of side L, then the (2.3.6) holds with ΓL of class C∞ for
|xi − yi| 6= L on the torus.

[2.3.14]: (the images method) Show that the function G(x− y) is such that ∆yG(x−
y) = δ(x−y): for this reason the construction in [2.3.12] is called the “images method” to

construct the Green function of the laplacian with periodic boundary conditions. (Idea:

It suffices to show this for x = ( L
2
, L

2
), because of the translation invariance of G.)

Bibliography: The theorem of external approximation, following (2.3.14),
is taken from [MP84]; for systems integrable by quadratures see [Ar79],
[Ga83], [Ga86].

§2.4 Vorticity algorithms for incompressible Euler and Navier–

Stokes fluids. The d = 3 case.

In the 3–dimensional case the analogue of the point vortex is a closed ori-
ented curve γ, that we shall call filament, on which rotu = ω is concentrated
and is tangent to it, so that γ is a flux line for ω.

(A) Regular filaments. Divergences and infinities.

To understand the evolution of a vorticity filament consider the Euler equa-
tion in the form (1.7.3)

ω̇ + u
˜
· ∂
˜
ω − ω

˜
· ∂
˜
u = 0,

dω

dt
= ω

˜
· ∂
˜
u (2.4.1)

It is easy to find the meaning of (2.4.1) as an equation of evolution for a
curve γ if we look at a point ξ ∈ γ and at an infinitesimal element, or
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vorticity element αω of the filament, with α infinitesimal. The evolution
by transport by the fluid of the element between ξ and ξ + αω is

ξ → ξ′ = ξ + u(ξ) dt

ξ + αω → ξ̃
′
= ξ + αω + u(ξ + αω) dt

(2.4.2)

which implies that the arc of γ between ξ and ξ + αω evolves into the arc

between ξ′ and ξ̃
′
with

ξ̃′ − ξ′ = α (ω + ω
˜
· ∂
˜
u dt) = αω′, if ω′ def

= ω + ω
˜
· ∂
˜
u dt (2.4.3)

This shows, by the second relation in (2.4.1), that the line element αω
evolves into αω′ while the line is transported by the current: hence γ re-
mains always tangent to ω and if the length of a line element of γ is changed,
in the evolution of γ, by a factor (1 + λ dt) then ω′ = ω(1 + λ dt) describes
also the corresponding evolution of the modulus ω = |ω| of ω.
Hence the filament shape evolves simply because it is transported and

deformed by the fluid. The vorticity, instead, changes proportionally to the
expansion of the line element corresponding to it: if the line gets longer the
vorticity increases.
Since vorticity is a zero divergence field, its flux is constant along its flux

lines, in particular along γ; hence if γ is a vorticity filament it must be

ω(ξ) = Γ δγ(ξ) tγ(ξ) (2.4.4)

where tγ(ξ) is the unit vector tangent to γ in ξ ∈ γ and δγ(ξ) is a uniform
distribution concentrated on γ, defined by

∫
f(ξ)δγ(ξ) dξ

def
=

∫

γ

f(ξ) dl (2.4.5)

for each f ∈ C∞, if d l is the line element for γ.
To check that Γ is time independent imagine the distributions δγ realized as

(limit of) a function different from 0 in a infinitesimal tubular neighborhood
T with cross–section, in ξ ∈ γ, given by s(ξ). Then, denoting χT (ξ) the
characteristic function of T , it must be

ω(ξ) = ΓχT (ξ)
1

s(ξ)
tγ(ξ) (2.4.6)

if tγ(ξ) is the unit tangent vector to γ in ξ.
Of course as the time varies the tube T is transformed into T ′ and the

section of the tube contracts by (1+λ dt) while the line element expands by
(1 + λ dt) because the tube T evolution is by an incompressible transport.
At the same time we know that vorticity varies by the same factor and,
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therefore, if ξ and ξ′ are (via the evolution) corresponding points on the
curve γ and on its image γ′, we note that

ω′(ξ′) = ΓχT ′(ξ′)(1 + λ dt)
1

s(ξ)
t′T ′ ≡ ΓχT ′(ξ′)

1

s′(ξ′)
t′T ′ (2.4.7)

which, comparing with (2.4.6), implies that Γ′ ≡ Γ.

The velocity field u associated with a vorticity filament can be computed
via a formula often called Biot–Savart formula because it says that the
velocity field of the vorticity field is the “magnetic field” of an electrric
current of intensity Γ circulating on the filament as computed from the
Biot-Savart law (units aside, of course)

u(x) =
Γ

4π

∮

γ

dρ ∧ (x− ρ)
|x− ρ|3 (2.4.8)

where dρ is the line element of γ: it is in fact the solution of ∂∧u = ω hence
it is the magnetic field generated by the intensity of current ω in (2.4.6).
Then the evolution of a system of several vorticity filaments should

(naively) be described by

dρ

dt
=

n∑

j=1

Γj

4π

∮

γj

dl ∧ (ρ− l)
|ρ− l|3 if ρ ∈ ∪n

j=1γj (2.4.9)

because they should be transported by the flow u.

One can then try to see if a generic vorticity field ω is approximable by
a family of many filaments γ with a small vorticity circulation Γ which,
as an approximation parameter ε varies, should become denser and denser
approximating better and better ω in the sense that, for every fixed f ∈
C∞(R3)

lim
ε→0

∫
f(x) · ωε(x) dx =

∫
f(x) · ω(x)dx (2.4.10)

Two are the difficulties of this “conjecture”, which is suggested by the
success of the analogous result in dimension d = 2 in §2.3. The most
evident is, perhaps, that in this d = 3 case it is no longer possible to neglect
the autointeraction of the filament. It is already so in the simple case of a
circular filament of vorticity u. Indeed at a point ξ ∈ γ, if R is the radius
of the circle γ, it will be

ρ̇ =
Γ

4π

∮

γ

dρ′ ∧
ρ− ρ′
|ρ− ρ′|3 (2.4.11)

showing that ρ̇ is orthogonal to the plane of the filament and it has size v

v =
Γ

4π

∫ 2π

0

2R2 dα
sin2 α

2

|(2R sinα/2)3| =
Γ

24πR

∫ 2π

0

dα

| sinα/2| =∞ (2.4.12)
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More generally u diverges near every point of γ where there is a curvature
R−1 > 0. Hence it has no meaning to consider the evolution of the filament.

A further difficulty, independent of the previous one, is that a generic
solenoidal velocity field does not have a corresponding vorticity field whose
flux lines are closed. Indeed in general the flux lines of the field ω = rotu,
although they cannot “terminate”, they will wander around densely filling
regions of R3 without ever closing (c.f.r. [1.6.20]). Hence it is not very
natural to think of an arbitrary divergenceless velocity field as “well” ap-
proximated by fields with closed flux lines.

The latter is an aspect in which the 3–dimensional fluid is deeply differ-
ent from a 2–dimensional one, in which instead an arbitrary vorticity field
is naturally thought of as a limiting case of a field in which vorticity is
concentrated in points.

Among the two difficulties the second looks less serious: after all it is a
difficulty that can certainly be circumvented by contenting ourselves with
approximations of ω with a system of closed vorticity filaments in a sense
weak enough and, of course, we are quite free a priori to define the meaning
of the “approximation” as we wish. The more so as it is an “external”
approximation which, therefore, can only be justified a posteriori.

The first difficulty is, however, almost “uneliminable”.

A way to eliminate it could be to consider filaments so irregular to have an
undefined tangent and, in fact, such that dρ′∧ (ρ−ρ′) oscillates so strongly
in sign and size to produce a finite result for the integral, (2.4.12), defining
the velocity field on the filament points.

Alternatively we could imagine filaments with flux Γ “vanishing” in a sense
to define so that the velocity in (2.4.12) is finite.

(B) Thin filament. Smoke ring.

We shall examine the second possibility first, and proceed heuristically to
derive the equations of motion of a vorticity filament with “evanescent”
vorticity, or “thin filament”.

Given a regular closed curve γ let γδ be a tiny tube with radius δ centered
around it: imagine that in γδ a vorticity field is defined and directed as
the tangent t(x) to the curve parallel to γ through x ∈ γδ. Here it is
not important to specify in which sense the tiny tube is filled by curves
“parallel” to γ because the result will not depend on such details.

The vorticity ω will therefore be Γδσδ(x)t(x) where σδ(x) is a function that,
in the direction perpendicular to γ, decreases in a regular way to 0 near the
surface of the tiny tube. Moreover the integral over a section orthogonal to
the tiny tube of σδ(x) is fixed to equal 1, so that the tiny tube is a flux tube
of the vorticity field with flux Γδ.

The velocity field corresponding to the vorticity field ω will be given by
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the Biot–Savart formula

u(x) =
Γδ

4π

∫

γδ

d3y σδ(y)
t(y) ∧ (x− y)
|x− y|3 (2.4.13)

where t denotes the unit tangent vector, and the calculation leading to
(2.4.12) tells us that if Ω = Γδ log δ is kept fixed while δ → 0, then

lim
δ→0

uδ(x) =
Ω

4π

1

R(x)
b(x) (2.4.14)

if b(x) is the unit vector binormal (we recall that this is the unit vector
orthogonal to the plane of the tangent and the normal) to the curve γ and
R(x) is the radius of curvature of the curve γ in x.

We then say that the velocity field of a thin filament γ with intensity Ω is

u(x) =
Ω

4π

1

R(x)
b(x) x ∈ γ (2.4.15)

which is sometimes called the “smoke rings equation”, because it is a model
for the motion of smoke rings, as long as they remain thin and well delimited.
A more appropriate name is the equation for the motion by curvature of the
curve γ.
The simplest case is when γ is a circle of radius R. In such case the (2.4.15)

tells us that the circle moves by uniform rectilinear motion orthogonally to
its own plane, with velocity Ω/4πR oriented to see the flux on the circle
proceed counterclockwise.

The general case can also be “exactly” studied: i.e. the motion of thin
filaments is integrable by quadratures! This is a very remarkable result of
Hasimoto, c.f.r. [Ha72],[DS94].
The key remark is that (2.4.15) implies that the curve moves without

stretching: the arc length of the curve is invariant. This can be seen form
(2.4.3) which shows that the stretching of a vector oriented as the line ele-
ment is proportional to ω

˜
·∂
˜
u, i.e. to t·∂s(R

−1b) = 0: because the derivative

of the binormal unit vector with respect to the curvilinear abscissa is pro-
portional to the normal unit vector, by Frenet formulae, (2.4.16).
The inextensibility of the curve γ during its evolution by curvature allows

us to label its points by their curvilinear abscissa with origin on a prefixed
point of the curve. During the evolution the points of γ will keep the same
abscissa on γ.
It is then important to recall the Frenet’s formulae that express, on a curve
γ, how the three unit vectors T = (t, n, b), tangent, normal and binormal to
it, change with the curvilinear abscissa in terms of the radius of curvature
R and of the torsion τ as

∂s



t
n
b


 =




0 R−1 0
−R−1 0 −τ

0 τ 0






t
n
b


 (2.4.16)

2/febbraio/2007; 19:36



§2.4 Vorticity based algorithms, d = 3 131

where torsion and curvature are computed at the point of γ with curvilinear
ascissa s, see problem [3.4.1] below.
If we set

ψ(s, t) =
1

R(s, t)
eiσ(s,t) σ(s, t) = κ(t) +

∫ s

0

τ(s′, t) ds′ (2.4.17)

where κ(t) is a suitable function of t, then Hasimoto’s theorem can be for-
mulated as

Theorem (Integrability of the motion by curvature): The function ψ(s, t)
satisfies the nonlinear Schrödinger equation

i
4π

Ω
∂tψ = ∂2

sψ +
1

2
|ψ|2ψ (2.4.18)

which is an equation which is integrable by quadratures.

Therefore, this tells us that R, τ vary, in a sense, quasi–periodically, c.f.r.
[CD82].
The derivation of (2.4.18) from Frenet’s formulae and from the equation of

motion by curvature, (2.4.15), is discussed in the problems [2.4.1]%[2.4.3].
Once (2.4.18) is solved the curvature and the torsion at a generic point

are known as functions of time on the inextensible curve γ. Therefore the
Frenet formulae allow us to compute, always via a quadrature, the unit
vectors t(s), n(s), b(s) as functions of time. Hence (2.4.15), with a further
quadrature, will also give the actual positions in space of the points of γ
as functions of their initial position (which plays the role of a label for the
points of γ).
Hence the problem is “completely soluble” by quadratures. However this

is not the appropriate place to discuss the qualitative features of the smoke
ring motions: it is clear that the motions of thin filaments is not strongly
related with the problem of an external algorithm for soving the Euler equa-
tions in d = 3 which would require considering filaments which are not thin,
as it already appears from the analysis in (A).

Nevertheless the problem just discussed has some relation with the Euler
equation. With the notations introduced above imagine δ > 0 and Ω =
Γδ log δ fixed and consider the solution of the Euler equation with initial
vorticity ωδ(x). Then one can ask whether the following property is valid
Assuming that such solution exists for all times t > 0 denote it uδ(x, t). Is

then the limit: limδ→0 uδ(x, t) = u(x, t) existing? And, if yes, is such limit
the solution of the Hasimoto equation of the curvature motion with initial
curve γ ?
Answering is difficult and, in general, the problem is open. However sup-

pose that the curve γ is a circle, and γδ is a tube obtained as the region
swept by a disk of radius δ centered at a point of γ and orthogonal to γ
by letting the center glide on γ. Suppose also that initial vorticity field
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ωδ is everywhere perpendicular to this disk. Then the answer to the just
posed questions is affirmative, see [BCM00]. This is interesting because it
clarifies the meaning and the importance of the heuristic considerations at
the beginning of this section (B).

(C) Irregular filaments: Brownian filaments.

We now go back to the problem of devising external algorithms for the
d = 3 Euler equations posed in (A) above and we shall consider the case
of an irregular curve. It is then possible that even the velocity given by
(2.4.8), suitably interpreted (because the contour integral cannot be, a pri-
ori, condidered defined over irregular curves) is finite.
The latter possibility can be illustrated through a simple example in which

one can see that a very irregular (“fractal”) curve can generate a velocity
field that is, in some sense, finite on the curve itself.
Consider a curve with parametric equations in cylindrical–polar coordi-

nates (polar on the x, y–plane) is

r(α) = R (1 + ε(α)), z = Rϑ(α) (2.4.19)

with ε(α), ϑ(α), for the time being, arbitrary.
Setting ε(0) = ε0, ϑ(0) = ϑ0, ε = ε(α), ϑ = ϑ(α) and calling ε′, ϑ′ the

derivatives of ε, ϑ in α and s ≡ sinα, c ≡ cosα we see that

dρ′ = (−R(1 + ε)s+Rε′c , R(1 + ε)c+Rε′s , Rϑ′) dα

ρ′ − ρ = (R(1 + ε)c−R(1 + ε0) , R(1 + ε)s , R(ϑ− ϑ0))
(2.4.20)

hence, setting also η = ε− ε0, µ = ϑ− ϑ0:

|ρ′ − ρ|2 = (2(1− c)(1 + ε+ ε0 + εε0) + η2 + µ2)R2 (2.4.21)

while the components of dρ′ ∧ (ρ′ − ρ) are immediately computed from
(2.4.20) and are

dρ′

dα
∧ (ρ′ − ρ) = (2.4.22)

=





R2[(1 + ε)cµ+ ε′sµ− ϑ′(1 + ε)s],
R2[ϑ′(1 + ε)(c− 1) + ϑ′η + µ(1 + ε)s− µε′c],
R2[−(1 + ε)η − (1 + ε)(1 + ε0)(1− c) + (1 + ε0)ε

′s]

Suppose that the curve is chosen as a sample in an ensemble of curves
randomly drawn with a probability distribution such that, as α varies near
α0 = 0, the quantities ε, ϑ are mutually independent and each is a random
function with independent increments. This means in particular that we
assume, for α1 < α2 < α3, that the quantity ε(α2)− ε(α1) is, as a random
variable, “very little” (see below) dependent from ε(α3)−ε(α2), and suppose
the analogous property on ϑ. Suppose, furthermore, for simplicity, that the
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fluctuations of ε, η satisfy, for α1, α2 near 0, a continuity property like for
instance

〈(ε(α2)− ε(α1))
2〉 ≤ (D|α2 − α1|)2−2a (2.4.23)

with D, a > 0 (the parameter a is a measure of lack of regularity of the
random curves); finally suppose that the large fluctuations have small prob-
ability (for instance bounded by a Gaussian function). In reality under the
above hypotheses one expects that a ≡ 1/2 and that the distribution of the
increments of ε(α) and ϑ(α), for the considered values of α is necessarily
Gaussian. Hence it is a distribution of the kind that one encounters in the
theory of Brownian motion.

Intuitively we imagine that the random functions ε, ϑ are continuous with
probability 1 but have, for α close to α0 = 0, increments between α1 and
α2, proportional to (D|α2 − α1|)1/2: hence they are not differentiable.
We pose the problem of whether, at least, the average velocity of the curve

in the point ρ corresponding to α = 0 is finite. Velocity is given by the
integral (2.4.11) which, considering the (2.4.22), in the point α0 = 0 becomes

u =
Γ

4πR

∫
dα

(α2 + η2 + µ2)3/2
· (2.4.24)

· (µ+ αε′µ− ϑ′α,−ϑ′α2/2 + ϑ′η + αµ− µε′,−η − α2/2 + 2ε′α)

where we set 1+ε ≃ 1, cosα−1 = −α2/2, sinα = α for simplicity, imagining
that
(1) ε and ϑ are small perturbations (although random) and
(2) taking into account that the convergence problems in the above analysis
are due to what happens for α ≃ 0.

The quantities ε′, ϑ′ suffer from interpretation problems because, by as-
sumption, such derivatives have no meaning: but (2.4.24) and the formal
expression ε′(α) = (ε(α + δ) − ε(α))/δ, in the limit as δ → 0, shows that
by the independence of the increments of ε and ϑ, the terms containing ε′

and ϑ′ can be considered as contributing zero to the average of (2.4.22),
(2.4.24).

Discarding the terms that contain ε′, η′ we see that the only component
of u that has nonzero average is the third, and that such component has
average

v =
Γ

8πR
〈
∫
dα

−α2

(α2 + η2 + µ2)3/2
〉 =

=
−Γ

8πR

∫
dαdηdµ

α2

(α2 + η2 + µ2)3/2
fα(η)gα(µ)

(2.4.25)

where fα(η), gα(µ) are the probability distributions of η = ε(α)− ε(0), µ =
ϑ(α)− ϑ(0).
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To take advantage, in a simple way, of the assumptions on the distributions
of η, ϑ it is convenient setting

η = (D|α|)1/2η̄, ϑ = (D|α|)1/2ϑ̄ (2.4.26)

and suppose that the variables η̄, ϑ̄ have an α–independent, Gaussian, dis-
tribution: this simplifies some formal aspects of the calculations. We find

|v| ≤cost

∫
dαd ηdµ e−η̄2−µ̄2 α2

(α2 +D|α|(η̄2 + µ̄2))3/2
≃

≃cost

∫
dαxdx e−x2 α2

(α2 +D|α|x2)3/2
≃

≃cost

∫
α2 dα

(α2)
<∞

(2.4.27)

This remark on the finiteness of u admits the following generalization.
Imagine a vorticity filament with equations

α→ ρ(α) + ξ(α) (2.4.28)

with a C∞ function ρ(α) and with ξ(α) sample of a random trajectory that,
locally near every one of its points, is “essentially” a Brownian motion. The
analysis leading to (2.4.27) can be extended to classes of curves that are
periodic and with increments that are “very little” mutually dependent.
An example of classes of curves with these properties is illustrated in the
problems.1

Then the evolution equation for the generic point on the curve, which we
shall label by ρ

0
+ ξ

0
with ρ

0
= ρ(α0), ξ0 = ξ(α0),c.f.r. (2.4.28), is written

d(ρ
0

+ ξ
0
)

dt
=− Γ

4π

∫
(dρ′ + dξ′) ∧ (ρ′ + ξ′ − ρ

0
− ξ

0
)

|ρ′ − ρ
0

+ ξ′ − ξ
0
|3

def
=

def
= − Γ

4π

∫
dρ′ ∧ (ρ′ + ξ′ − ρ

0
− ξ

0
)

|ρ′ − ρ
0

+ ξ′ − ξ
0
|3

(2.4.29)

where having eliminated the terms dξ′, that correspond to the terms with
the derivatives of ε, ϑ in (2.4.24), is in a sense a step analogous to having
eliminated, in d = 2, the autointeraction terms of the vortices (see (2.3.9)),
and it is hopefully justified by what we have seen in the above particular
case in which these autointeraction terms between the vortices gave formally
a zero contribution to the average velocity.

1 Note that we cannot assume that ξ(α) it to be exactly a Brownian path with α as time

variable because the increments cannot be really independent because the curve must,
in the end, be closed. The precise meaning that is given to the motion ξ(α) is discussed

in detail in the problems following [2.4.4].
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The equation (2.4.29) generates then two equations, one for the average ρ
and one for the fluctuations ξ

dρ

dt
=− 〈 Γ

4π

∫
dρ′ ∧ (ρ′ + ξ′ − ρ− ξ)
|ρ′ − ρ+ ξ′ − ξ|3 〉

dξ

dt
=− Γ

4π

∫
dρ′ ∧ (ρ′ + ξ′ − ρ− ξ)
|ρ′ − ρ+ ξ′ − ξ|3 −

dρ

dt

(2.4.30)

To show the correctness of (2.4.30) should mean something similar to what
can be shown in d = 2. But before proceeding we must stress that now the
problem is rather more involved and an answer is not known.

Suppose that x→ ω(x) ∈ C∞ and that the flux lines of the vorticity feld ω
are all closed.2 Imagine to cut orthogonally the flux lines by a surface and
to pave the suface with small squares of side ≈ λ and let xj be the center

of the j-th square and let Γλ
j be the flux of ω through the j-th square. Call

γj the flux curve of ω passing through xj . Then the vorticity field

ωλ(x) =
∑

j

Γλ
j δγj

(x) tγj
(x) (2.4.31)

approximates weakly the field ω in the limit in which the size λ of the squares
tends to 0.
We can now imagine to evolve the curves γj + ξ

j
, where ξ

j
is a sample of

a random motion “similar” to a Brownian motion but with periodic sample
paths and with a suitable mean square dispersion Dλ

j (see problem [2.4.4]
and following ones for an example) and compute the vorticity field at time
t by using the (2.4.30).
We ask the question whether it is possible to determine Dλ

j so that the
vorticity field at time t has a weak limit as λ → 0, converging to a regular
vorticity field solving the Euler equation with initial datum ω. It is by no
means clear that this or something similar to this could be true.
Heuristically we may expect that by choosing Dλ

j ≡ Dλ, j–independent,

and setting ωD(x, t) = limλ→0 ω
λ, then the limit limD→0 ω

D ≡ ω(x, t)
should satisfy the Euler equations. This should hold even if the fluctuations
ξ are fixed as time independent, thus leading us to consider just the first
of the (2.4.30) as a closed system of equations (because now ξ has, by
assumption, the same distribution at all times).
Hence from the first of the (2.4.30):

dρ

dt
= −〈 Γ

4π

∫
dρ′ ∧ (ρ′ + ξ′ − ρ− ξ)
|ρ′ − ρ+ ξ′ − ξ|3 〉 (2.4.32)

2 Which is general is not true, even when ω vanishes outside a bounded region, but which
constitutes an interesting class of cases.
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with ξ(t) defined by a time independent distribution (rather than by the
second of the (2.4.30)), is an evolution equation that is interesting in itself,
even if it turns out to be only indirectly related to the evolution problem for
a vorticity filament. In fact to give a meaning to the motion of a filament
of vorticity it is necessary to consider both the equations in (2.4.30) and we
see that the same “average filament” evolves in a different way depending
on the distribution of the initial fluctuations ξ, i.e. depending on the actual
structure that is assigned to the filament.

The (2.4.32) and (2.4.30) give a method to give a meaning to the evolution
of a filament (and to the notion of filament itself) alternative to the one,
also natural, of considering the filament as a tiny vorticity tube initially
with a constant section and to follow its evolution. From the viewpoint of
numerical simulations the (2.4.32) and (2.4.30) are somewhat simpler than
the equations arising from considering the tiny tube model for the vorticity
field, because the objects that are described are, respectively one and two–
dimensional while the tubes are 3–dimensional.

We see in this way the generation of the idea of making even more “ex-
ternal” the approximation algorithm by using as vorticity filaments, rather
than regular closed curves, very irregular curves like the samples of an en-
semble of random curves with a probability distribution that assigns essen-
tially independent increments to the coordinates of their points.

But wishing to avoid such radically “external” algorithms of solution of
the Euler equations, which present to us obvious conceptual and compu-
tational difficulties, it would be necessary to give up using vorticity based
algorithms that work so well in 2–dimensional fluids. Therefore abandoning
them should be only a “last resrt” because the computational difficulties
do not seem overwhelming, as proved by the existence of empirical solution
methods for the NS equation (which is an equation of similar complexity),
c.f.r. [Ch82], [Ch88].

(D) Irregular filaments: quasi periodic filaments.

Another road to pursue for an alternative generalization of the 2-dimen-
sional vorticity algorithms can be obtained by concentrating the vorticity,
rather than on closed lines, on lines that are not closed and fill densely
2–dimensional or even 3–dimensional surfaces.

Such velocity fields can be observed in real experiments, think for instance
to real smoke rings that move in air.

If the filament lines are distributed densely on the surface of a 2–
dimensional torus, for instance, or fill its interior, the rotation of u for
each of them must be infinitesimal and only their density will make sense.

Consider, as an example, the case of a filament filling densely the surface
of a torus T in the simple case in which T is a 2-dimensional torus and on
T the flux line of ω is a dense quasi periodic trajectory.

We imagine that the torus T is tangent to the x1, x2 plane at the origin
and that it has there an external normal parallel to the x3 axis. The torus
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will be represented parametrically as

x1 =X1(ξ1, ξ2), x2 = X2(ξ1, ξ2), x3 = X3(ξ1, ξ2) with

X1(ξ1, ξ2) =ξ1 +O(ξ2), X2(ξ1, ξ2) = ξ2 +O(ξ2), X3(ξ1, ξ2) = O(ξ2)
(2.4.33)

where the ξ are angles on a standard torus ξ ∈ [0, 2π]2
def
= T .

On T we imagine the curve ϕ with equations s → ξ(s) = (s, ηs), 0 ≤
s ≤ qn, with η = irrational and η = limn→∞ pn/qn where pn and qn are
the “convergents” of the continued fraction for η(cf. problem [5.1.7] below)
p.97). Note that the curve ϕ will fill densely the torus and that, therefore,
if n is large the closed curve ϕn with equations s → ξ(s) = (s, pns/qn)
“essentially draws” the torus.
Let τ be the unit vector tangent at the origin to T in the direction of

the curve ϕ and let ν be the unit vector orthogonal to τ and tangent to
the torus at the origin. Consider a surface element dσ = dh dℓ around the
origin where dℓ is the size in the direction of τ and dh is the size in the
direction of ν.
The sum of the lengths of the segments of the curve ϕn that are contained

in dσ will be N = qndσ/S, asymptotically in n, where S is a geometric
constant (by the “ergodicity” of quasi periodic motions).
We imagine that a vorticity field ωn is concentrated on the curve ϕn and

is parallel to it: so that ωn = γq−1
n τ δϕn

(ξ) where δϕn
is a Dirac’s delta

distribution uniformly distributed along the curve ϕn. If we now let n→∞
we see that, for any smooth function f(ξ), it is

∫
f(ξ)ωn(ξ) dξ−−−−→n→∞

∫
ω(ξ)f(ξ) dξ, ω(ξ) = τ(ξ)δT (ξ) dξ (2.4.34)

where δT is a Dirac distribution is concentrated on the surface T and there
proportional to the surface area (the proportionality constant is a func-
tion on T that depends on the actual shape of T (i.e. on the parametric
equations X(ξ) in (2.4.32)).

We interpret ω(ξ) as a vorticity field concentrated on the quasi periodic
filament ϕ on T .
This vorticity distribution induces a velocity u(ξ) which is finite. Indeed

we can compute it at the origin (to fix the ideas) supposing first that the
torus is flat in the vicinity of the origin; setting ρ = (l, h, z), τ = (0, 1, 0),
ν= (normal to the torus at the origin), the contribution to the velocity by
a neighborhood of size of order ε around the origin is, by the Biot–Savart
formula (2.4.8), proportional to the (improper) integral

∫

|l|<ε

γ
τ ∧ ρ
|ρ|3 δ(z) dh dz dl =

∫

|l|<ε

γ
lν dh dl

(h2 + l2)3/2
≡ 0 (2.4.35)
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for small ε, by parity. In the general case in which the torus has curvature
at the origin, or near it, this means that the Biot–Savart integral (which
would be logarithmically divergent by “power counting”) defining u is in
fact (improperly) convergent.
If we really concentrate the vorticity on ϕn, then we see that the above

interpretation of the limit as n→∞ simply results from the limit as n→∞
of the velocity field un deprived of a part that is improperly defined as
n → ∞: this is (again) analogous to the prescription in the d = 2 case
of point vortices in which the deleted part (last term in (2.3.9)) could be
interpreted as a rotation of the vortex around itself and with infinite angular
speed.

Similarly if T is a domain bounded by a torus and densely filled by flux
lines and if the vorticity on its interior can be considered distributed with a
density ω then the integral expressing the value of the field u is convergent.
There is, therefore, also the possibility of studying the evolution of a family

of flux tubes of dimension 2 or 3 densely filled by one more filament by letting
the latter evolve to be transported by the current lines generated by itself.
Alternatively one can study cases in which the vorticity is concentrated
on surfaces (“vorticity sheets”) or in volumes (“tubes”) and such as to
approximate some smooth vorticity field. In such cases there would be no
problem in giving a meaning to the Biot–Savart integral, at least at the
initial time.
In practice the algorithm seems simpler in the case of a vorticity filament

concentrated on a line dense on a surface, if compared to the case of a
vorticity “sheet” concentrated on a surface. But the convergence problems
of all the above algorithms are very little studied and only on a empirical
(numerical) basis, [Ch82].

Problems.

[2.4.1]: (time derivative of the principal frame on a curve) Consider a closed moving
curve γ. Show that the three orthogonal vectors T = (t, n, b) evolve so that there exist
three functions A,B,C such that

∂t

(
t
n
b

)
=

(
0 A B
−A 0 C
−B −C 0

) (
t
n
b

)
def
= MT (2.4.36)

(Idea: Since the three vectors are orthonormal they must evolve as t → O(t)T (t) where

O(t) is a rotation matrix. Then the matrix Ȯ(t) = MO(t) with M an antisymmetric
matrix).

[2.4.2]: (principal frame motion and Frenet relations) Consider the motion by cur-
vature, i.e. according to (2.4.15), of a curve (necessarily inextensible) γ. Then the
points x = r(s) are labeled by their curvilinear abscissa s and, therefore, as time varies
their positions can be expressed via a function x = ρ(s, t). Writing ∂s T = FT and

∂t T = MT , the Frenet formulae (2.4.17) and the relations in [2.4.1], show that the
identities ∂t∂sT = ∂s∂tT imply the relations

∂tR
−1 =∂sA+Bτ

0 =∂sB −R−1C − τA
∂tτ =− ∂sC −R−1B
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and, setting Ω′ = Ω/4π, the ∂tρ = u = Ω′R−1b imply ∂s(R−1b) = ∂t(∂sr), which in turn

imply

A = Ω′ τ

R
, B = Ω′∂sR

−1

hence A,B,C are uniquely determined by R, τ . (Idea: For the first relations simply
differentiate the (2.4.36) with respect to t and (2.4.16) with respect to s using (2.4.16)
and, respectively, (2.4.36) to express the ∂t and, respectively, the ∂s of the unit vectors:
one gets six relations each of the above ones being obtained twice. Proceed similarly for
the second relations, by taking also into account that ∂sρ = t.)

[2.4.3]: (Hasimoto’s theorem) Starting from the expressions in [2.4.2] for A,B,C check
that the equations for R, τ are

∂t

(
R−1

τ

)
=

(
∂sA+Bτ

−∂sC −R−1B

)
∂sB = R−1C + τA

and check that, setting ψ = R−1eiσ , σ = κ(t) +
∫ s

0
τ(s′)ds′, κ(t) =

∫ t

0

(
2−1R(0, t′)−2 −

C(0, t′)
)
dt′, the “Hasimoto identity” holds, i.e. the ψ satisfies the nonlinear Schrödinger

equation, (2.4.18).

[2.4.4]: (A gaussian process) Consider the periodic functions in L2([0, 2π]), α→ εN (α)
with zero average and with only N harmonics. These are the functions that can be

expressed as: εN (α) = π−1
∑N

k=1
(ck cos kα+sk sin kα). Define a probability distribution

on the set of functions of the type considered, by assigning to the coefficients ck, sk the
Gaussian distribution

N∏

k=1

e−
1
2
(c2

k
+s2

k
)k2

dck dsk√
2πk−2

2

and show that 〈(εN (α)− εN (β))2〉 = 2π−1
∑N

k=1
k−2(1− cos k(α− β)) ≡ CN (α− β) <

|α−β|2π where |α−β|2π = minn |α−β−2πn| and also that CN (x)−−−−→
N→∞

π(|α−β|2π +

O((|α − β|22π)2). The Gaussian process defined in [2.4.4] and discussed in problems
following [2.4.4] has periodic sample paths: it differs therefore from the usual brownian
motion. However the difference is quite trivial, see [IM65] p.21, problem 3. (Idea:
Note that the series limit of CN (x) as N → ∞ is the Fourier series for the function
|x|2π − |x|22π/2 in the interval [−π, π].)

[2.4.5]: In the context of [2.4.4] show that the probability that |εN (α)−εN (β)| is larger

than
√
γCN (α− β) is 2

∫ ∞

γ
e−γ2

d γ/2/
√

2π. (Idea: Note that εN (α)−εN (β) must have

a Gaussian distribution with dispersion (or “width”, or “covariance”) CN (α−β),because
it is a linear combination of Gaussian random variables (the ck, sk).)

[2.4.6]: Show that the probability that, given two “dyadic” points α, β < π of order p,

α = 2π h2−p and β = α+ 2π 2−p adjacent it is |εN (α)− εN (β)| > γp2−p/2 is estimated
above by Pp = c 2p γ p exp−γ2p2/2 for some constant c > 0. (Idea: The probability of
the simultaneous validity of any number of events is bounded by the sum of the respective
probabilities: hence the result follows immediately from the problem [2.4.5] because in
this case the number of events is 2p).

[2.4.7]: (Wiener’s theorem for brownian paths) Given two dyadic points α = 2πh2−p

and β = 2πk2−q , α, β < π, not necessarily of the same order, show that, for instance,
if α < β and q < p there exists a sequence of n points α = x1 ≤ x2 ≤ x3 . . . ≤ xn = β
such that xi+1 − xi = 2−(p−i)σi with σi = 0, 1 suitable. This means that xi and xi+1

are either the same or adjacent “on scale” 2−(p−i).
Deduce that the probability that |εN (α)−εN (β)| < γ |α−β|1/2 log |α−β|−1 for any pair

of dyadic points α, β < π can be estimated by 1 − Cγe−γ2/2, for some constant C > 0
(Wiener theorem).
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(Idea: First note that (β − α)/2π = (k2p−q − h)/2p so that expanding in base 2 the

numerator k2p−q−h =
∑<p

j
nj2

j with nj = 0, 1 we get the representation (β−α)/2π =∑
j
σj2

−j , with σj = 0, 1 and trivially related to the nj .

Write εN (α) − εN (β) =
∑

(εN (xi+1) − εN (xi)) and note that the probability that, for

all the i, it is |εN (xi+1) − εN (xi)| < γ(p − i)2−(p−i)/2 is estimated, by the result of

[2.4.6], by 1− Cγe−γ2/2.

Moreover
∑

2−(p−i)σi ≡ |β − α|/2π hence we get the inequality

∑
2−(p−i)/2(p− i)σi ≤ 12 (|β − α|/2π)1/2 log2 4π|β − α|−1

in fact if p is the smallest pj for which σj = 1 it is 2− p ≤ |β − α|/2π < 2− p+1

and
∑

j
pjσj2

−pj/2 ≤
∑∞

m= p
m2−m/2 ≤ 12 p2− p/2 from which the latter inequality

follows.)

[2.4.8]: Hence the random functions (defined on the dyadics) εN (α) are uniformly Hölder
continuous, with exponent ∼ 1/2, and “modulus of continuity”

γ = sup
α,β

|ε(α)− ε(β)|
(|α− β|2π log |α− β|−1

2π )1/2

that is finite with a probability tending to 1 for γ →∞. One can then consider the limit as
N →∞ of the probability distribution on the space C([0, 2π]) of the continuous functions
generated by the Gaussian distribution PN introduced in [2.4.4]. The measurable sets
will be defined by the set of functions that in m prefixed angles α1, . . . , αm take values
in prefixed intervals I1, . . . , Im. Such sets are called “cylinders”, for obvious reasons,
and they play the role analogous to that of the intervals in the theory of integration of
functions of one variables. Furthermore, (in analogy to the ordinary integration theory)
all sets approximable will be measurable that can be approximated via a denumerable
sequence of operations of union, intersection and complementation on a denumerable
collection of cylindrical sets. Check that the probability of each cylindrical set converges
to a limit as N → ∞. One can check (using Wiener theorem) that the measure thus
constructed is completely additive (i.e. if a cylinder can be represented as a countable
union of other cylinders then its measure is the sum of the measures of the cylinders
that add up to it); and that the set of Hölder continuous functions is measurable and
has probability 1. One defines in this way a probability distribution (“periodic Brownian
motion”) on the space of the continuous functions which are Hölder continuous (even
with exponent 1/2).

Bibliography: The tiny filaments theory is mainly taken from [DS94]
which discusses some remarkable integrable extensions; see also [Ha72] and
the important extension to the theory of motion by curvature in the case
of discrete curves, [DS95]. Other pertinent references are [BCM00], [Ne64],
[CD82].
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