1984
G. Gallavotti
Quasi-integrable mechanical
systems
In Ph\'enom\`enes critiques, syst\`emes al\'eatoires, th\'eories de
jauge, Lectures at the XLIII summer school in Les Houches, 1984,
Ed. K. Osterwalder, R. Stora, Elseviers, p. 541-624.
Abstract
KAM theory and renormalization group
(1) Basic definitions on integrability and canonical
integrability. Examples.
(2) Canonical integrability and the Arnold-Liouville theorem.
(3) Classical perturbation theory
(4) Birkhoff theorems on harmonic oscillators.
(5) Some applications of perturbation theory. The precession of
Mercury. Poincar\'e's triviality theorems.
(6) Phase space diffusion: bounds on the time scales of Arnold's
diffusion. Nekhorossev theorem.
(7)Resonances and chaos
(8)Existence of non resonat invariant tori and quasi periodic motions. The
Kolmogorov-Arnold-Moser theorem
(9)Concluding remarks.
References
Keyword KAM, Nekhorossev theorem, Renormalization group, Classical
Mechanics, Birkhoff normal form, Poincar\'e triviality, Quasi periodic motions,
Homoclinic splitting, Block waves