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Abstract: In sharp contrast to the corresponding clas-

sical systems cases it is not yet understood how to define
a mechanical quantity with the interpretation of entropy

creation rate for nonequilibrum stationary states of finite
quantum systems with finite thermostats. Some aspects

of this problem are discussed here in cases in which iden-
tifying entropy creation rate as a mechanical observable

might be possible.
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1. Classical systems and thermostats

The aim of this paper is to propose a notion of ther-
mostat acting reversibly on a quantum mechanical sys-
tem which is analogous to the Gaussian or Nosé-Hoover
thermostats that have been so important in recent times
for the development of research non nonequilibrium. At
the same time we remark that “entropy creation” can be
associated with the thermostats discussed here and can
be given a meaning that makes it susceptible of experi-
mental measurements. This is important also because it
allow us to extend the “chaotic hypothesis” to such sys-
tems and to test the “fluctuation relation” that holds, at
least as a formal consequence. I begin by recalling the no-
tion of classical thermostat that will be genreralized here
and some results concerning classical nonequilibrium sta-
tistical mechanics.

A thermostat is, physically, a device that extracts heat
created inside a mechanical system subject to non conser-
vative forces, thus allowing control of the energy build-
up: in this way a forced system can reach a stationary
state. Such a state is however deeply different from an
equilibrium state. Heat, matter or electric currents may
be present and the dissipation associated with the ther-
mostats implies that the probability distribution µ that
describes the statistical properties of the system is not
even close to the familiar Maxwell-Boltzmann distribu-
tions for equilibrium. This feature makes the problem
of the statistics of stationary nonequilibria particularly
interesting and challenging.

In the classical case a rather general model for a system
in contact with thermostats is represented in Fig.1, [1].
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Fig.1Reservoirs occupy finite regions outside C0, e.g. sectors

Cj ⊂ R3, j = 1, 2 . . .. Their particles (with mass 1) are con-

strained to have a total kinetic energy Kj constant, by suitable

forces, so that the reservoirs “temperatures” Ti are well defined.

Fixed j the label i is in 1, . . . .Nj .

The equations of motion for the particles positions
X0, X1, . . . , Xn are written in Fig.1 in terms of

(1) The potential energies for the Nj particles inside each
region Cj , Uj(Xj), which will be assumed bounded, for
simplicity; all masses are m = 1, also for simplicity,
(2) The potential energies between particles in C0 and in
Cj: Uj(X0, Xj), also assumed bounded,
(3) The external, non conservative, positional forces F
acting on the particles in C0,
(4) The thermostat forces αiẊi which are so defined that

the total kinetic energy Kj = 1
2Ẋ

2

j in each thermostat is
strictly constant. Such forces will be imagined realized
by imposing constancy of Kj via Gauss’ principle, [2,
Sec.9]. This gives, [1],

αj ≡
Wj − U̇j

2Kj

(1.1)

where Wj is the work done per unit time by the system
particles on the j–th thermostat particles and Uj is the
internal potential energy of the j–th reservoir: Wj =

−Ẋj · ∂X
j
Uj(X0, Xj). Thus Wj will be identified with

the heat Qj ceded per unit time by the system to the j-th
thermostat.
(5) The value of the constant Kj will be written Kj =
3
2NjkBTj (kB = Boltzmann’s constant) and will define
the temperature of the j-th thermostat, [1].

A brief computation yields the divergence of the equa-
tions of motion, i.e. of the phase space contraction rate,
for the velocity–position coordinates Ẋ, X

σ(Ẋ, X) = ε(Ẋ, X) + Ṙ(X) (1.2)

where, remarkably, ε(Ẋ, X) can be interpreted as the
entropy creation rate

ε(Ẋ, X) =
∑

j>0

Qj

kBTj

, R(X) =
∑

j>0

Uj

kBTj

, (1.3)

Eq.(1.3) are correct up to O(N−1) if N = min Nj as the
addends should contain also a factor (1− 1

3Nj
) to be exact:
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for simplicity O(1/N) corrections will be ignored (their
inclusion would imply trivial changes without affecting
the physical interpretation), [1].

An additive total derivative, Ṙ(X) in this case, of a
bounded quantity does not affect the long time fluctua-
tions. Therefore the average phase space contraction and
the average entropy creation rate have the same average
σ+ ≡ ε+ and, assuming ε+ 6= 0, the same large devi-

ations rate function ζ(p) for p = 1
σ+τ

∫ τ

0 σ(St(Ẋ, X))dt

and for 1
ε+τ

∫ τ

0
ε(St(Ẋ, X))dt.

Furthermore the equations of motion are reversible so
that, under the Chaotic Hypothesis, the Fluctuation The-
orem yields, [1, 3–6], the symmetry property

ζ(−p) = ζ(p) − p ε+, |p| < p∗ (1.4)

for the large deviations rate ζ(p) of p. The identi-
fication between phase space contraction and entropy
creation rate is thus motivated. It should be noted
that Eq.(1.3) shows that even in experiments, a case in
which one hardly knows the equations of motion and the
phase space divergence, the divergence can be measured
through heat flow measurements, at least as far as its fluc-
tuations over large time are concerned, and give nontriv-
ial consequences like the fluctuation relation, Eq.(1.4).

2. Quantum systems and thermostats

Is it possible to formulate a dissipation theory analo-
gous to the one developed for classical systems when the
quantum nature of the system in C0 cannot be neglected?

At first it might seem almost impossible: in quantum
systems average kinetic energy is not identified with tem-
perature; and all motions are quasi periodic if the sys-
tem is of finite size (as in our examples in Sec.1), so that
strictly speaking no chaos is possible.

A way out, explored in the literature, would be to
imagine the thermostats as infinite systems whose state
far from C0 is a Gibbs state at a well defined temperature,
[7–10]. This is a point of view that could also be taken in
the classical case: however the recent progress in classical
statistical mechanics was sparked by the introduction of
finite size thermostat models and this is the path that
will be attempted here.

Thermostats have, usually, a macroscopic phenomeno-
logical nature: in a way they should be regarded as clas-
sical macroscopic objects. Therefore it seems natural to
model them as such: thus their temperature can be de-
fined as the average kinetic energy and the question of
how to define it does not arise.

Consider the system in Fig.1 when the quantum na-
ture of the particles in C0 cannot be neglected. Suppose
first that the nonconservative force F (X0) acting on the
system vanishes, i.e. consider the problem of heat flow
through C0. Let H be the operator on L2(C

3N0

0 ), space
of symmetric or antisymmetric wave functions Ψ,

−
h̄2

2
∆X

0
+U0(X0)+

∑

j>0

(

U0j(X0, Xj)+Uj(Xj)
)

(2.1)

where ∆X
0

is the Laplacian, and note that its spectrum
consists of eigenvalues En = En({Xj}j>0), for Xj fixed.

A system–reservoirs model can be the dynamical sys-

tem on the space of the variables
(

Ψ, ({Xj}, {Ẋj})j>0

)

defined by the equations (where 〈·〉Ψ is the expectation
in the state Ψ)

−ih̄Ψ̇(X0) = (HΨ)(X0), and for j > 0

Ẍj = −
(

∂jUj(Xj) + 〈∂jUj(X0, Xj)〉Ψ

)

− αjẊj (2.2)

αj
def
=

〈Wj〉Ψ − U̇j

2Kj

, Wj
def
= − Ẋj · ∂jU0j(X0, Xj)

here the first equation is Schrödinger’s equation, the sec-
ond is an equation of motion for the thermostats parti-
cles, [1], similar to the one in Fig.1, whose notation for
the particles labels is adopted here too. Evolution main-

tains the thermostats kinetic energies Kj ≡ 1
2Ẋ

2

j exactly
constant so that they can be used to define the ther-
mostats temperatures Tj via Kj = 3

2kBTjNj , as in the
classical case.

Let µ0({dΨ}) be the formal measure on L2(C
3N0

0 )

(

∏

X
0

dΨr(X0) dΨi(X0)
)

δ
(

∫

C0

|Ψ(Y )|2 dY − 1
)

(2.3)

with Ψr, Ψi real and imaginary parts of Ψ. The formal
phase space volume element µ0({dΨ})× ν(dX dẊ) with

ν(dX dẊ)
def
=

∏

j>0

(

dXj dẊj δ(Ẋ
2

j − 3NjkBTj)
)

(2.4)

is conserved, by the unitary property of the wave func-
tions evolution, just as in the classical case, up to the

volume contraction in the thermostats, [1].

If Qj
def
= 〈Wj〉Ψ and R is as in Eq.(1.3) the contrac-

tion rate σ of the volume element in Eq.(2.4) is given by
Eq.(1.2) with ε, that will be called entropy creation rate,
defined by Eq.(1.3).

In general solutions of Eq.(2.2) will not be quasi pe-
riodic and the Chaotic Hypothesis, [2, 11], can be as-
sumed: if so the dynamics should select an invariant
distribution µ. The distribution µ will give the statis-
tical properties of the stationary states reached starting
the motion in a thermostat configuration (Xj , Ẋj)j>0

randomly chosen with “uniform distribution” ν on the

spheres Ẋ
2

j = 3NjkBTj and in a random eigenstate of
H . The distribution µ, if existing and unique, could be
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named the SRB distribution corresponding to the chaotic
motions of Eq.(2.2).

In the case of a system interacting with a single ther-
mostat the latter distribution should be equivalent to the
canonical distribution.

Hence an important consistency check for the model
proposed in Eq.(2.2) is that there should exist at least
one stationary distribution equivalent to the canonical
distribution at the appropriate temperature T1 associ-
ated with the (constant) kinetic energy of the thermo-
stat: K1 = 3

2kBT1 N1. In the classical case this is an
established result, [12],[1, 2].

Hence an important consistency check for the model
proposed in Eq.(2.2) is that there should exist at least
one stationary distribution µ equivalent to the canonical
distribution at the appropriate temperature T1 associ-
ated with the (constant) kinetic energy of the thermo-
stat: K1 = 3

2kBT1 N1. In the classical case this is an
established result, [12],[1, 2].

The check should be performed also in the present case,
thereby providing further motivation and support for the
model in Eq.(2.2). A first candidate for µ might be to

attribute a probability proportional to dΨ dX1 dẊ1 times

∞
∑

n=1

e−βEnδ(Ψ − Ψn(X1) eiϕn) dϕn δ(Ẋ
2

1 − 2K1) (2.5)

where Ψ is the wave functions for the system in C0 and
Ẋ1, X1 are positions and velocities of the thermostat par-
ticles and ϕn ∈ [0, 2π] is a phase, En = En(X1) is
the n-th level of H(X1) with Ψn(X1) the correspond-
ing eigenfunction. The relation between the distribution
in Eq.(2.5) and EIG(ρ) in [13] should be noted. However,
as pointed out by a referee, Eq.(2.5) is not invariant un-
der the evolution Eq.(2.2) and it seems difficult to exhibit
explicitly an invariant distribution.

3. Some consequences. Conclusion.

The simplest case arises when V ≡ 0: i.e. no noncon-
servative force acts on C0 and Eq.(2.2) models heat flow,
through C0, between the various reservoirs.

Solutions of Eq.(2.2) are also reversible: time reversal
being the change in sign of the velocities and the con-
jugation of the wave function Ψ(X0). Hence under the
Chaotic Hypothesis the Fluctuation Theorem, [3],[2], see
Eq.(1.4), would hold for the entropy creation rate fluctu-
ations in the SRB distribution: however since the phase

space is infinite dimensional corrections to Eq.(1.4) have
to be expected for large p, as in [4], and should be dis-
cussed on a case by case basis. Note that the fluctuation
theorem extension is also here immediate once a model
is properly formulated: as it was in the analogous cases
of infinite thermostats, [8].

If a nonconservative force F (X0) acts on the sys-
tem and has a (multivalued) potential V (X0), so that
F (X0) = −∂V (X0) is the force on the particles in C0,
then in absence of thermostats generally the system will
not reach a stationary state: this is true both in the clas-
sical and in the quantum cases. In the latter case the
Schrödinger equation, with H modified into H + V , will
not have eigenvectors because of the multivaluedness of
the potential V : actually it will not even be well de-
fined. It should, however, be interpreted as an equation
for the wave function Ψ defined on the “covering space”
Ω of C3N0

0 in which the potential V (X0) becomes sin-
gle valued, and the thermostats should have the effect of
allowing reaching a stationary state described by wave
functions Ψn(X0 + ξ(t)) with Ψn ∈ L2(Ω) and ξ(t) a
suitable “flow”.

Whether this really happens is, however, an open prob-
lem even in the classical case; there it has been called the
problem of efficiency of the thermostats, [1, 14], and it
has been studied only in a few numerical simulations in-
volving long range or short range particles interactions.
A fortiori it is an open problem in the quantum case.

Finally it should be stressed that Eq.(2.2) provides a
model of finite thermostat for a quantum system and
therefore may be suited for simulations and tests.

Identification of phase space contraction rate as the en-
tropy creation rate (up to an additive total time deriva-
tive) is an achievement of the recent research in classical
nonequilibrium statistical mechanics, [12], which has led
to the possibility of nonequilibrium simulations without
the need of considering infinite thermostats and, subse-
quently, to general results like the Fluctuation Theorems,
[3],[15, 16], and the possibility to test them experimen-
tally, [17],[1, 18], and even to make use of them in appli-
cations. In this note the proposal that rather straightfor-
ward extensions to quantum nonequilibrium are possible
has been discussed.
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