hep-th/0607043

Authors: Giuseppe Benfatto, Pierluigi Falco, Vieri Mastropietro  

Title Non-perturbative Anomalies in $d=2$ QFT

Abstract: We present the first rigorous construction of the QFT Thirring model, for any value of the mass, in a functional integral approach, by proving that a set of Grassmann integrals converges, as the cutoffs are removed, to a set of Schwinger functions verifying the Osterwalder-Schrader axioms. The massless limit is investigated and it is shown that the Schwinger functions have different properties with respect to the ones of the well known exact solution: the Ward Identities have anomalies violating the anomaly non-renormalization property and additional anomalies, apparently unnoticed before, are present in the closed equation for the interacting propagator, obtained by combining a Schwinger-Dyson equation with Ward Identities.

Key words:  Chiral anomaly, Renormalization group, OS axioms

Giuseppe Benfatto
Matematica, Universita' di Roma 2
V.le della Ricerca Scientifica
00133 Roma, Italia
tel +39-06-7259-4698

em: benfatto@mat.uniroma2.it

Pierluigi Falco
Matematica, Universita' di Roma 2
V.le della Ricerca Scientifica
00133 Roma, Italia
tel +39-06-7259-4209

em: Pierluigi.Falco@roma1.infn.it

Vieri Mastropietro
Matematica, Universita' di Roma 2
V.le della Ricerca Scientifica
00133 Roma, Italia
tel +39-06-7259-4209

em: mastropi@mat.uniroma2.it
http://ipparco.roma1.infn.it