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ABSTRACT

We analyze time dependent fluctuations in the phase space compression factor of a class of

N-particle systems that are at equilibrium or in steady states close to equilibrium. This class

does not seem to include Anosov systems, and excludes isoenergetic systems, but includes

most steady state systems considered in molecular dynamics. The fluctuation relation of the

Gallavotti-Cohen Fluctuation Theorem (GCFT) has been proven for Anosov systems, but it is

expected to apply more generally. This raises the question of which non-Anosov systems

satisfy the fluctuation relation. The fluctuations of the equilibrium and near-equilibrium

systems considered here do not seem to satisfy the fluctuation relation, although they seem to

satisfy it when they are moderately far from equilibrium. We provide arguments to explain

these facts.
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1.  INTRODUCTION

In 1993, Evans, Cohen and Morriss proposed a relation meant to describe the fluctuation

properties of N-particle systems in nonequilibrium steady states that were maintained at

constant energy by an appropriate deterministic time reversible ergostat [1].  This relation

was based on heuristic theoretical arguments, and supported by computer simulation data.

The authors of reference [1] borrowed the idea from the theory of nonlinear dynamical

systems, that the expanding rates of trajectory separation along the unstable directions of the

phase space in chaotic systems can be used to compute the steady state averages of smooth

phase functions.  For the first time they tested this idea in numerical calculations of

nonequilibrium many particle systems (at that time, the same had been done using periodic

orbit expansions, but only in calculations concerning low dimensional dynamical systems

[2]).  Evans, Cohen and Morriss [1] used the symmetry properties of these expansion rates for

time reversible systems, to propose a relation that we refer to as a steady state Fluctuation

Relation (FR). Reference [1] motivated a number of papers in which various fluctuation

theorems were derived or tested, the first of which were the Evans-Searles Transient

Fluctuation Theorem (ESTFT) [3], and the Gallavotti-Cohen Fluctuation Theorem (GCFT)

[4] described in Sections 2 and 3.

A typical nonequilibrium system may consist of a relatively small number of particles that

interact with each other and with an external field (the driven system).  This system may be

in thermal contact with a very much larger number of particles on which no external field

acts.  The reservoir particles could act as a heat bath effectively maintaining the smaller

system of interest at a constant average temperature at least over the characteristic relaxation

time required for the system of interest to relax to a (quasi) steady state.  Although the whole
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system (driven system plus reservoirs) is Hamiltonian, the driven system by itself is non-

autonomous and non-Hamiltonian.

An alternative way of modeling such systems is to replace the large number of reservoir

particles by a much smaller number of reservoir particles, each of which is subject to a time

reversible deterministic force that imposes a constraint on their equations of motion.  Among

the most common constraints are the one which fixes the internal energy of the constrained

particle system, called an “ergostat”, and the one that fixes the peculiar kinetic energy of that

system, called a “thermostat”.  These modified equations of motion were proposed

simultaneously and independently by Hoover et al. [5] and Evans [6] in the mid 1980's and

they have been studied theoretically and successfully employed in molecular dynamics

computer simulations for two decades.

Reference [1] considered a very long phase space (steady state) trajectory of a Gaussian

ergostatted, (i.e. isoenergetic) N-particle system [7]. This long trajectory was divided into

(non overlapping) segments of duration t.  Along each of the trajectory segments, the

instantaneous phase space compression rate, L

L ∫
∂
∂

∑
GG

GĠ (1)

was calculated.  Here we denote the phase space vector describing the microstate

(coordinates and momenta) of the N-particle system in d Cartesian dimensions by

GG ∫ ( , ,.. , ,.. )q q q p p1 2 1N N .  In [1], the dynamics is assumed to be chaotic and therefore the

averaged value of the phase space compression factor computed along the trajectory

segments Lt , can be considered to be a random variable whose probability distribution,
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Pr( Lt ), can be constructed from the histogram of its observed values for the set of such

trajectory segments.  Because of time reversibility of the dynamics, if the compression factor

takes a value A, then it can also take the value -A, albeit with different probability.  The FR

tested in reference [1] states that:

1
t

A
A

At

t
ln

Pr( )
Pr( )

L
L

=
= -

= - for large t. (2)

Remark 1.  One may find it odd to consider fluctuations in the phase space volume of

mechanical systems.  As a matter of fact, although the phase space compression factor is

identically zero for Hamiltonian particle systems, it is non-zero for the (non-autonomous)

dynamical systems obtained by restricting one's attention to an arbitrary subset of particles

of that Hamiltonian system [8], (i.e.  projecting out the coordinates and momenta of some of

the particles).  This is the case for the Hamiltonian system described above (driven system

plus reservoirs), if the degrees of freedom of the reservoirs are projected out.

As it turns out, one finds that heat is on average removed from the non-Hamiltonian modified

system, and that the corresponding phase space compression factor is nonzero and on average

is negative.

In reference [1], equation (2) was verified in nonequilibrium molecular dynamics computer

simulations.  Because the system studied in [1] was maintained at constant energy, equation

(2) can be written in an alternative but mathematically equivalent form,

1
t

V A

V A
At e

t e
ln

Pr([ ] )

Pr([ ] )

b
b

J F

J F

∑ =
∑ = -

= - for large t, (3)
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where for systems in d Cartesian dimensions,

[ ]( )
( )
( )

bJ
J

GG
GG

GG
∫

dN
K2

. (4)

K is the (peculiar) kinetic energy and the dissipative flux J, is defined in the usual way in

terms of the adiabatic derivative of the internal energy, H0, and the system volume V, [7],

˙ ( ) ( )H Vad
e0 GG GG∫ - ∑J F . (5)

This shows how in the ergostatted (constant energy) case, the instantaneous phase space

contraction rate can be equated with a physical quantity, which is recognizable as the

(instantaneous) irreversible entropy production S( ) [ ]( )GG GG= - ∑bJ FV e. This rate is a product

of a thermodynamic force, Fe,  a thermodynamic flux, bJ and the system volume V.  In

reference [1] both ways of writing the FR were exploited almost interchangeably.

In this paper, we analyze time dependent fluctuations in the phase space compression factor

for a class of systems that are at equilibrium or in steady states close to equilibrium. The

particles are assumed to interact via the usual potentials used to represent atomic and

molecular interactions in statistical mechanics and molecular modeling. The equilibrium

dynamics for this class of system does not preserve the phase space volume instantaneously,

therefore isoenergetic systems are excluded, but most molecular dynamics systems are

included in our analysis.
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Our work is motivated by the fact that numerical data do not seem to satisfy the FR of the

GCFT (equation (2)) if the state of the systems under consideration is too close to an

equilibrium state, while they seems to satisfy it if the systems are moderately far from

equilibrium [9-11].

The GCFT has been proven for time reversible, dissipative, transitive Anosov systems, but it

has been argued that the FR should apply more generally to systems of physical interest.

Most of these systems can hardly be thought to be of the Anosov type, just as they cannot be

considered ergodic. Therefore, the Chaotic Hypothesis (CH) was proposed in [4] in the hope

that the class of systems satisfying the FR would be significantly larger than the class of

Anosov systems.  In a similar way the Ergodic Hypothesis justifies the equality of the time

averages and ensemble averages of macroscopic variables to classes of system that are not

strictly speaking ergodic.

This raises the question of which non-Anosov systems satisfy the FR of the GCFT, and the

CH. To address this question, it is important to understand why certain molecular dynamics

systems do not seem to satisfy the FR.  This will lead to a better understanding of the

meaning of the CH. To this purpose, we provide two theoretical arguments to explain the

numerical results of [9-12]. Perhaps surprisingly, we find that the particle systems of the class

mentioned above should not satisfy the FR of the GCFT when their steady states are close to

equilibrium states.

In Section 2 we give a brief description of the CH and the GCFT, including a discussion of

the conditions necessary for the GCFT.  In Section 3 we describe the Evans-Searles FTs and

highlight the differences between these theorems and the GCFT.  In Section 4 we investigate
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the possibility of extending the proof of the GCFT and its associated FR to equilibrium

dynamics.  We argue that except for constant energy dynamics, such an extension may lead

to contradictions.  This implies that the CH does not hold for these non-constant energy

equilibrium systems.  In Section 5 we reach an analogous conclusion for systems that are in

the linear response regime close to equilibrium.  We show that the GC FR is in contradiction

with the known Green-Kubo relations for transport coefficients in thermostatted systems.

Section 6 summarizes our results.
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2.  THE GALLAVOTTI-COHEN FLUCTUATION THEOREM

In 1995 Gallavotti and Cohen [4] justified equation (2) within a novel framework, meant to

extend Boltzmann's ergodic hypothesis to both equilibrium and nonequilibrium statistical

mechanics, using the language of modern dynamical systems theory.  More precisely, for a

dynamical system (C,S) they assumed the following (p. 936 of [4]):

(A) Dissipation:  The phase space volume undergoes a contraction at a rate, on the

average, equal to D xs( ) + , where 2D is the phase space C dimension and s( )x  is a model-

dependent “rate” per degree of freedom.

(B) Reversibility:  There is an isometry, i.e., a metric preserving map i in phase

space, which is a map i x ix: Æ  such that if t x tÆ ( ) is a solution, then i x t( ( ))- is also a

solution and furthermore i2 is the identity.

(C) Chaoticity:  The above chaotic hypothesis holds and we can treat the system

(C,S) as a transitive Anosov system.

The chaotic hypothesis that they referred to states (p. 935 of [4]):

Chaotic Hypothesis (CH): A reversible many-particle system in a stationary state can be

regarded as a transitive Anosov system for the purpose of computing the macroscopic

properties of the system.

Gallavotti and Cohen then showed the following (p. 963 of [4]):
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Fluctuation Theorem:  Let (C,S) satisfy the properties (A)-(C)  (dissipativity, reversibility,

and chaoticity).  Then the probability p t( )p  that the total entropy production D t xt s t0 ( )

over a time interval t t= t 0  (with t0 equal to the average time between timing events) has a

value Dt x ps( ) +  satisfies the large-deviation relation

p
p

t

t

s( )
( )

p
p

eDt p

-
= + (6)

with an error in the argument of the exponential which can be estimated to be p, t

independent.

This means that if one plots the logarithm of the left-hand side of (6) as a function of p, one

observes a straight line with more and more precision as t  becomes large…”

The above theorem is known as the Gallavotti Cohen Fluctuation Theorem or GCFT for short

[13].  It should be noted that the GCFT only refers to phase space compression rate (called

entropy production rate in [4], cf. p.936) and only to steady states.  Apparently there is no

direct requirement that the system should be maintained at constant energy, constant kinetic

energy or even that it be maintained at constant volume. The GCFT only seems to require

dynamics that is time reversible, smooth and to some degree hyperbolic, which makes the

system behave as though it was a time reversible Anosov diffeomorphism.  Therefore,

equation (2) should in principle apply to a rather wide class of dynamical systems, including,

for instance, isothermal-isobaric as well as isoenergetic-isochoric N-particle systems, and

also non-particle systems as long as their dynamics is sufficiently similar to that of reversible,

transitive Anosov systems.  As a matter of fact, Gallavotti and Cohen, on p. 939 of [4] state:

“The details of the models described here will not be used in the following, since our main
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point is the generality of the derivation of a fluctuation formula from the chaotic hypothesis

and its (ensuing) model independence.” They then give various examples of models for

which the CH is expected to hold.

The FR (6) of the GCFT is equivalent to equation (2), but written in different notation.

Reference [4] motivated numerical tests (e.g. [11, 14-16]) in different types of dynamical

systems, where equation (2) or similar relations, were verified.  The Gallavotti and Cohen

work also motivated attempts at experimental verifications of the GCFT (see, for example,

references [17, 18]), even though these experimental systems cannot be considered

isoenergetic, and the experimental measurement of phase space contraction rates in non-

isoenergetic systems is highly problematic.

Quite obviously, realistic models of physical systems can hardly be expected to be transitive

Anosov dynamical systems.  Nevertheless, just as the mathematical notion of ergodicity is

known to be violated by most common physical models and yet turns out to be extremely

useful for practical purposes, the CH of [4] should be interpreted as saying that deviations

from the transitive Anosov property cannot be observed at the macroscopic level, for certain

dynamical systems.  The CH then allows the use of the techniques of differentiable dynamics

in the description of the steady states for a wide class of systems of physical interest, as long

as one is interested the behavior of macroscopic observables.  In particular, the CH allows

one to describe the steady state of a given N-particle system as if it was describable by a

Sinai-Ruelle-Bowen (SRB) measure, i.e.  a probability distribution which is smooth along the

unstable directions of the dynamics, and which can be approximated by means of dynamical

weights attributed to the cells of finer and finer Markov partitions.
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However, at the present time the only test that has been attempted to determine whether a

dissipative system satisfies the CH, is the numerical or experimental check of whether the

system satisfies equation (2).  This is somewhat circular because if the CH is satisfied, then

the dissipative system will also satisfy GCFT. A more precise characterization of the CH is

desirable. The experience accumulated so far seems to suggest that time reversible, chaotic,

dissipative systems in a steady state should satisfy the CH.

Perhaps surprisingly, chaos (meaning the presence of at least one positive Lyapunov

exponent) does not seem to be necessary for expressions such as equation (2) to be verified in

numerical simulations of simple N-particle systems [19, 20].  In addition, reference [10]

gives numerical evidence that thermostatted systems satisfy equation (2) at very high shear

rates, while at small shear rates [9, 11] it becomes very problematic, or even impossible to

verify equation (2).  As a matter of fact, the numerical results of [9, 11] suggest that as the

system departs further from equilibrium, the data become more consistent with equation (2).

If equation (2) affords the only possible characterization of the CH, these results appear in

contradiction with the expectation that the CH should be satisfied better as the system

approaches the equilibrium state and therefore becomes more chaotic (i.e. has a larger sum of

positive Lyapunov exponents).

This is rather puzzling because there is no obvious reason why thermostatted (constant

temperature) systems should behave so differently from ergostatted systems.  Furthermore, it

is our impression that the distance from equilibrium, or the amount of dissipation, which is

invoked in the proof of the GCFT does not play an essential role in the derivation of equation
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(2), as long as this dissipation is not exceedingly high [14].  Therefore, close to equilibrium

and far from equilibrium thermostatted systems should not behave as differently as they do.

Thus, the domain of applicability of equation (2) and the CH is an open and quite intriguing

question.  In this paper we argue that equation (2) and the CH do not apply to thermostatted

systems that are near, or at, equilibrium.  Note the distinction between thermostatted systems,

where the peculiar kinetic energy is constrained or fixed, and ergostatted systems where the

internal energy is fixed.  Also note that for hard discs or spheres, fixing the kinetic energy

and the total energy is equivalent and therefore equation (2) is expected to apply to hard N-

particle systems under these forms of thermostat since for hard systems both thermostats are

in fact identical. Reference [14] gives evidence for the validity of the GCFT for one such

system, i.e. for a system of thermostatted-ergostatted hard discs.  However, if the kinetic

energy is constrained using a Nosé-Hoover thermostat, then we show that the CH does not

apply, even to hard core particles.
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3.  EVANS-SEARLES FLUCTUATION THEOREMS

A number of authors, inspired by [1, 4], have obtained a range of fluctuation relations for

steady state systems which are similar in form to equation (2) but have different content or

are applicable to systems including both deterministic and stochastic systems.  See, for

example, references [21-25].  Still other authors, refined the GCFT, cf.  references [26-28].

Independently of this activity, in 1994 Evans and Searles derived the first of a set of

fluctuation theorems (ESFTs) for nonequilibrium N-particle systems which focused on a

quantity W, called the “dissipation rate”, rather than on the phase space contraction rate, L

[29, 30]. For thermostatted or ergostatted nonequilibrium steady state systems the time

average “dissipation rate” is identical to the average rate of entropy absorption (positive or

negative) by the thermostat.  For homogeneously thermostatted systems the entropy absorbed

by the thermostat is equal and opposite to the so-called spontaneous entropy production rate

defined in linear irreversible thermodynamics, S=sV. Further for homogeneously

thermostatted systems Evans and Rondoni [8] have recently shown that the entropy

production rate is also equal and opposite to the rate of change of the fine grained Gibbs

entropy. These ESFTs apply at all times to given ensembles [31] of transient trajectories

(ESTFTs), or given ensembles of steady state trajectories in the long time limit [30]

(ESSFTs). The form of the resulting FRs is identical to equation (2), but contain different

information since they are based on the statistics of the given ensembles of trajectories.

Jarzynski and Crooks have taken an approach similar to the transient approach of Evans and

Searles, to calculate the free energy difference between equilibrium states [32, 33].
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To derive the ESTFT one considers an ensemble of trajectories that originate from a known

initial distribution (which may be an equilibrium or nonequilibrium distribution, it does not

matter) and proceeds under the possible application of external fields and/or thermostats.

One then obtains general transient fluctuation theorems (ESTFTs) stating that

ln
Pr( )

Pr( )
W

W
t

t

A
A

At
=

= -
= (7)

which is of similar form to (2) but where the time averaged phase space contraction rate is

replaced by the so-called time averaged dissipation rate or function, Wt ( )GG , and Pr represents

the probability which is influenced by the chosen ensemble.  In all the ESTFTs the time

averages are computed from t=0 when the system is characterized by its initial distribution,

f( , )GG 0 , to some arbitrary later time t.  The dissipation function depends on the initial

probability distributions (different ensembles) and on the dynamics, and is defined by the

equation,

ds s
f
f t

s ds

t

t t

t

W L

W

( ( )) ln
( ( ), )
( ( ), )

( ( ))GG
GG
GG

GG
0 0

0 0
0Ú Ú∫ Ê

ËÁ
ˆ
¯̃

-

=
. (8)

for all positive times t.

For ergostatted dynamics conducted over an ensemble of trajectories which is initially

microcanonical, the dissipation function is identical to the phase space compression factor,
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W L( ) ( ) [ ]( ) , /t t t V when dH dte= - = - ∑ =bJ F 0 0, (9)

while for thermostatted dynamics (both isokinetic and Nose-Hoover), the dissipation function

is subtly different,

W

L

( ) ( ) , tan

( ) ( ) ˙ ( )

t t V cons t temperature

t t V H t

e

e

= - ∑

π = - ∑ -

b

b b

J F

J F 0 . (10)

For isokinetic and isoenergetic dynamics, b = 2K dN( ) /GG  where d is the Cartesian dimension

of the space in which the system exists. For Nose-Hoover dynamics b = 1 k TB  where kB is

Boltzmann’s constant and T is the absolute temperature appearing in the Nose-Hoover

equations of motion – see equation (20). It is clear that for constant temperature dynamics the

dissipation function is different from the phase space compression factor. However, in all

cases the time averaged dissipation function is equal (with probability one) to the average

entropy production since lim[ ˙ ]
t tH

Æ •
=0 0 and lim [ ] lim

t
t e

t
tV

Æ • Æ •
∑ =bJ F S  where S  is the extensive

entropy production that one would identify for near equilibrium systems from the theory of

irreversible thermodynamics.  The entropy production is a product of the thermodynamic

force Fe and the time average of its conjugate thermodynamic flux, [ ]bJ t .

ESTFTs have been derived for an exceedingly wide variety of ensembles, dynamics and

processes [30].  For example ESTFTs have been derived for dissipative isothermal isobaric

systems and for relaxation systems where there is no applied external field but where the

system is not at equilibrium by virtue of its initial distribution f( , )GG 0 .  In all cases the

ESTFTs have been verified in numerical experiments. Two ESTFTs have recently been
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confirmed in laboratory experiments on colloidal suspensions: one involving the transient

motion of a colloid particle in a moving optical trap; and the other involving the relaxation of

a particle in an optical trap whose trapping constant is suddenly changed [34, 35]. One should

not be surprised by the diversity of FTs - they refer to fluctuations and fluctuations are well

known to be ensemble and dynamics dependent - even at equilibrium.

The ESTFT can be stated as follows:

Theorem (Evans-Searles):  For any time reversible N-particle system, and for all positive

times t Œ ¬ , there exists a dissipation function Wt  and a smooth probability distribution

d f dm( ) ( )GG GG GG=  in phase space, such that:

1
t

B

B
p

t p

t p
ln

Pr( )

Pr( )
,

,

W
W

Œ
Œ

=
-

e

e
(11)

up to corrections of order e .  Here, Pr( ),Wt pBŒ e  is the probability assigned by m  to the set

Ep of initial conditions GG for which the dissipation Wt  lies in  B p pp, ( , )e e e= - + .

It is interesting to observe that the probability measure m , i.e.  its density, is not necessarily

unique, and that different probability measures lead to the same result as long as

ln
( )

( )

f

f St
GG

GG
 exists for all initial conditions GG in the support of m , and for all t Œ •[ , )0 .

In contradistinction to the GCFT, these ESTFTs are not only true asymptotically in time but

rather are valid for all times t.
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Evans and Searles have also argued [30] that for transitive chaotic systems where the steady

state exists and is unique, the statistics of properties averaged over trajectory segments

selected from a single steady state trajectory are equivalent to a carefully constructed

ensemble of steady state trajectory segments [30, Section 2.2].

Assuming the arguments of [30] holds, then one can derive asymptotic steady state FTs

(ESSFTs) that apply to segments along a single trajectory, from the relevant ESFTs.  The

corresponding fluctuation formula for an ergostatted steady state system is then identical to

(2), and contains the same information [36].  It should also be noted that for nonergostatted

systems the predictions of the ESSFTs are different in general from the corresponding

predictions of the GCFT.  This is because in general the dissipation function is different from

the phase space compression rate. To check the validity of the ESSFTs, numerical

simulations have been performed for various ensembles and dynamics, showing that

numerical results are indistinguishable when sampling either from a single long steady state

trajectory or from an ensemble of steady state trajectory segments [9].

Remark 2.  This equivalence of statistics requires a sufficiently long relaxation time to allow

an accurate representation of the steady state, and long trajectory segments.  Thus as is the

case for the GCFT, the ESSFTs, in contradistinction to the ESTFTs, apply to steady states

and are only valid at large t.

The dissipation function that appears in the ESSFT for a single steady state trajectory is

defined by (8), where the initial distribution function is the equilibrium distribution function

generated by the same dynamics that is responsible for the steady state except that the
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dissipative field is set to zero [30].  This requires that the zero field system is ergodic and is

at equilibrium.
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4.  EQUILIBRIUM FLUCTUATIONS

For thermostatted equilibrium systems the phase space compression factor fluctuates about

zero.  As a result of the time reversal invariance of all properties of the equilibrium state, we

know that,

Pr( ( ) )
Pr( ( ) )

L
L

t e

t e

F A
F A

t
= =

= = -
= "

0
0

1 . (12)

This equation states that for all averaging times, the distribution of time averaged values of

the phase space compression is precisely symmetric about zero.  This is the special property

of any equilibrium state. Comparing equation (2) with equation (12), one can see that for any

finite averaging time t (no matter how large) with A π 0, equation (2) incorrectly predicts an

asymmetry in the equilibrium distribution of time averaged values of the phase space

compression factor.   Therefore, for such systems, some assumptions that are invoked in the

derivation of (2) must not hold.  We argue below that the systems modeled by equilibrium

thermostatted dynamics are of this type.

For simplicity, let us focus on systems whose equations of motion are:

˙

˙

q
p

p F p

i
i

i i i

m
=

= - a
. (13)
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where a  is a reversible thermostat multiplier that constrains the kinetic energy.  We argue

that the usual derivation of the FR might be adapted to consider non-dissipative systems of

the kind (13), if the CH is assumed to hold for them.  We show below that in this case we still

get equation (2) – although this equation cannot be correct for these systems.  This might

imply that such systems violate the requirements of the CH in a rather substantial way.  It

would suggest that they might also do so even if driven to nonequilibrium steady states that

are close to equilibrium.  This suggestion, if correct, would provide one explanation of the

numerical results of [9, 11].

This argument might also contribute to the clarification of the meaning of the CH, delimiting

the range within which it yields correct results in a rather unexpected way.  Equation (2), in

fact, has been observed to describe systems quite similar to those considered here (see, for

example, [1, 10]).

To understand this point, we analyze the proof of the GCFT given by Ruelle in Section 3 of

reference [26].  In Ruelle’s notation [26], the dimensionless phase space contraction rate at x

over time t , e t( )x  is given by,

e
tt

t
( ) log ( )x

e
J f x

f

k

k

= -

=

-

Â1 1

0

1

(14)

where ef  the average phase space contraction per unit time, f k  gives the time evolution of x,

and  J is the Jacobian of f with respect to the chosen metric.  Comparing with the notation

introduced above t ∫ t , e t( ) /x t∫ L L  and ef ∫ - L.  Equation (14) excludes the cases with

ef = 0, and normalizes e t to 1.  Nevertheless, the division by ef  does not seem to be an
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essential ingredient of the proof in [26], and the calculations presented in Sections 3.6-3.9 of

reference [26] can apparently be carried out even when e t is not normalized to 1.  Assuming

that this is the case, dynamics with ef = 0 can be considered under the assumption that the

CH holds for them, and Ruelle’s derivation may then be repeated for the non-normalized

phase space contraction rate,

e
t

t

f
k

k

x J f xo ( ) log ( )= -

=

-

Â1 1

0

1

(15)

instead of the dimensionless phase space contraction rate.  In general, ef xo ( )  takes a range of

values for any system, even for equilibrium systems, but not for isoenergetic equilibrium

systems which yield  
1

01

0

1

t

t
log ( )J f xk

k

-

=

-

Â =  for any t  and any x.  The range of possible

values of  ef xo ( )  can be written as [ , ]- * *p p  which is symmetric about 0 due to time-

reversibility.  If our assumption is correct then, following the same steps of Ruelle’s proof,

one would obtain a relation formally identical to that reported in Section 3.9 of [26].

Differently from Ruelle’s case, this procedure would not yield a dimensionless expression,

and whether ef  is equal to zero or not would seem to make no difference.  One could then

write,

p
x x p p

x x p p
pf

f

- £
Œ - +

Œ - - - +
£ +

Æ •
d

t
r e d d

r e d d
d

t
t

t
lim log

({ : ( ) ( , )})

({ : ( ) ( , )})

1 o

o (16)

Here, as in Ruelle [26], rf  would be the probability, under the dynamics specified by

f, that e t
o ( )x  took on a value p p pŒ - * *[ , ], while d > 0 would be an arbitrarily small constant.
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To obtain this result the dynamics is assumed to be of the Anosov type, which should imply

that the phase space contraction rate is a bounded function (assumed to be Holder continuous

in [26]).  For equilibrium isokinetic dynamics, the width of the interval [ , ]- * *p p  can be easily

estimated.  One finds that the average phase space contraction rate, over a time t, is

proportional to ( ( ) ( )) /F Ft t- 0  where F( )t  is the value of the interaction potential at time t.

If F  is bounded, the largest fluctuation goes as 1/t, and one then obtains p* = 0.  Differently,

if F  is not bounded, one may have p* > 0, and indeed, even p* = • .  According to the

derivation above, in the case of bounded F , (16) is not bracketed between p - d and p + d ,

but between - d and + d , and is then not in contradiction with equation (12). The content of

(16) would be trivially correct.  In the case of unbounded F , (16) could be valid for

p Œ -• •( , ), i.e. for all p.  However, in this case, equation (16) does not describe the

fluctuations of ef xo ( ) .  This suggests that one of the assumptions made in the derivation is not

met by these systems, and might mean that these systems are not encompassed by the CH.

The Nosé-Hoover thermostat is another thermostat that is widely used, and generates the

canonical equilibrium distribution.  In this case p Œ -• •( , ), irrespective of the boundedness

of the interaction and again, if the CH holds, the derivation above leads to (16) which

contradicts equation (12) and does not describe the fluctuations of ef xo ( )  correctly.

The equilibrium systems considered above are clearly not Anosov, however equation (2) has

been tested numerically for a wide range of systems, none of which, to the best of our

knowledge, meets all the conditions that the proof [26] requires.  For instance, the models of

[1, 10, 15, 16] are not expected to be uniformly hyperbolic; those of [14, 19, 20] have

singularities; and the flat billiards of [19, 20] are not even chaotic (that is, have no positive
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Lyapunov exponents).  But for them the FR has been shown to hold, and the CH considered

appropriate to describe them. In other words, although the Anosov property is violated for

these systems, this violation did not appear substantial.   In some cases [10] the systems

would collapse to the equilibrium systems considered above if the field was set to zero.  It

therefore seems interesting to consider the derivation above for equilibrium thermostatted

systems in order to see what result is obtained.

The above analysis directs our attention towards the role of p*in the proof of the GCFT, and

could provide one explanation of the results of [9, 11, 12].  Indeed, assume that the FR fails

at equilibrium for certain systems because they have p* = •.  Then, the

FR would have to fail for the same systems when they are driven to nonequilibrium steady

states that are sufficiently close to equilibrium.  Indeed, if the range of fluctuations is ( , )-• •

at equilibrium, it remains so under a small driving field because application of the external

field does not remove the singularities in the phase space contraction rate.

However, this explanation is not satisfactory as the systems of reference [10] have singular

phase space contraction rates (hence p* = •)  and yet satisfy (2). One could argue that the

large fields of [10] make the largest fluctuations so rare (cf. Section 1 of [10]) that p*

practically reduces to a finite constant.

However, many other scenarios are consistent with the available numerical evidence. For

instance, one subtle violation of the CH could be inferred from the fact that the number of

positive finite time Lyapunov exponents fluctuates along phase space trajectories of our

thermostatted systems. This indicates that the continuous splitting of the tangent space of our
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dynamics, required by the Anosov condition, does not even approximately hold for our

systems.

Another possible scenario which will be investigated in section 5, concerns the times of

convergence of equation (2).  If these times are too long the CH is invalid in a practical sense.

In  contrast to the discrepancy between (2) and (12) for isothermal systems, for an ensemble

of isothermal systems the ESTFT (7), can be rewritten as,

1
t

J A
J A

AVFt

t
eln

Pr( )
Pr( )

=
= -

= -b (17)

where the trajectory segments begin from the isothermal equilibrium ensemble and proceed

for a time t, under zero field Fe = 0, thermostatted dynamics.  However since the external

field is zero, equation (17) predicts that at equilibrium time averages of the dissipative flux

are as expected, equally like to be positive or negative, regardless of the duration of the

averaging time.

In the above, we concluded that the FR given in equation (2) does not apply to thermostatted

equilibrium systems. However for ergostatted equilibrium states the ESTFT (equation (7))

and equation (2) both make correct statements about the equilibrium symmetry of

fluctuations.  For equation (2) this is due to the fact that p* = 0, while for the ESTFT for

ergostatted systems can be written as

1
t

J A

J A
AVFt

t
eln

Pr([ ] )

Pr([ ] )

b
b

=
= -

= - . (18)
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In (18) J refers to the component of J that is parallel to Fe, so when the field is zero, the

ESTFT states that time averages of the thermodynamic flux [ ]bJ  are equally likely to be

positive as negative, regardless of the averaging time.  This is obviously a correct statement.

In the next section we discuss the application of the FR to thermostatted near equilibrium

steady states.
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5.  THE APPROACH TO EQUILIBRIUM

Consider a thermostatted or ergostatted dissipative system,

˙

˙

q
p

F

p F F p

i
i

i e

i i i e i

m
= + ∑

= + ∑ -

C

D a
. (19)

The system is time reversible and chaotic.  Gallavotti (in 1996) [37] was the first to point out

that, at least in the case of ergostatted dynamics, the GCFT (and hence equivalently the

ESSFT), can be used to derive the well known Green-Kubo relations for linear (near

equilibrium) transport coefficients [38]. Later Searles and Evans [39] showed that the ESSFT

for thermostatted systems could also be used to derive correct Green-Kubo relations for linear

transport coefficients [40, 41].  We now show that in the Nosé-Hoover thermostatted case

where,

˙ / / /a t= -( ) = -( ) ∫ -( )1
2

2
1 10

0 0
2

Q
K dNk T

K
Q

K K K KB (20)

(where Q K= 2 0
2t  is related to the arbitrary relaxation time t , of the thermostat, K is the

peculiar kinetic energy and K0 is some chosen fixed value of the peculiar kinetic energy), the

FR for phase space compression (equation (2)) makes incorrect predictions, and is

inconsistent with the correct Green-Kubo relations for linear transport coefficients.  This

would seem to imply that the Chaotic Hypothesis is not applicable to Nosé-Hoover

thermostatted near equilibrium steady states.
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The Nosé-Hoover canonical (equilibrium) distribution is:
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from which the distribution of { a} can be obtained by integration,
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2

2
1
2

2

2
(22)

which is Gaussian with a variance s ba
2 1= / ( )Q . [42]  Assuming equations (21) and (22) hold

for our equilibrium systems, the distribution of at  is also Gaussian because it is just the time

integral of a .  From the equations of motion (19, 20) we see that the rate of change of the

extended Nose-Hoover Hamiltonian ¢ ∫ +H H Q0 0
21

2 a , is

dH
dt JVF dNk Te B

¢ = - -0 a . (23)

The external field contributes to the fluctuations in the phase space compression factor.  This

contribution cannot be expected to be Gaussian except when long time averages are made

near the mean of the distribution.

From (23) we see that,
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( ( ) ( )) / ( ) /¢ - ¢ ∫ ¢ = - -H t H t H t t J VF dNk Tt e B t0 0 00 D a (24)

So the variance of time averages of a contains, to leading order, two contributions,

s s sa t t
H t e J Bt V F dNk T2 2 2 2 2 2 2

0
= +¢( / ) / ( )( )D .

(25)

Because we assume a steady state, in the long time limit, s D ¢H t0

2
( )

 is independent of t. From

[39] we know that for sufficiently long times,

t L F k T V O F t NJ e B e
t

s2 2 1 12= + - -( ) / ( ) (26)

and we also know from the Green-Kubo relations that, lim ( ) ( )
F

e
e

L F L
Æ

=
0

0  is the linear

transport coefficient defined by the linear constitutive relation,

lim lim ( )
F t

t

ee

J
F

L
Æ Æ •

=
0

0 . (27)

We also note that at nonzero fields L Fe( ) has no simple relation to the nonlinear transport

coefficient for the process [39].

Substituting (26) into (25) gives, at long times and small fields,

s sa t H t B e e B e

e

dNk Tt VF L F tk T dN O F t N

O t N O F t N

2 2 2 2 2 4 2 1

2 1 2 1 1

0
2= + +

= +

¢
- -

- - - -

D ( ) / ( ) ( ) / ( ( ) ) ( )

( ) ( ) .

(28)
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For any fixed non zero field, no matter how small, at sufficiently long times the second term

dominates.

In the weak field limit the mean of a is,

a b b( ) / ( ) ~ ( ) / ( ) ( )F V dN L F VF dN O Fe e e e e= - ∑ = =J F 0 2 2 for small Fe. (29)

Now we would like to consider the limit t Æ • , so that we can simultaneously:

• generate fully converged Green-Kubo integrals;

• ensure that t is a large as required by the FR of equation (2); and

• ensure that (near the mean) the distribution of at  can be described by a Gaussian,

However as we increase the integration time t, the variance of the distribution of at  gets ever

smaller.  This implies that for fixed Fe, the mean of the distribution of at , which has a fixed

mean value a , moves more and more standard deviations away from zero.  This makes it

dubious that symmetric fluctuations, like ±a , which are the object of equation (2), be

described by a Gaussian distribution at long times with fixed Fe.   To ensure that the typical

fluctuations of at , namely ±a , have their distribution described accurately as a Gaussian, we

propose to take the following limits simultaneously: t Æ •  AND Fe Æ 0 while keeping

a sa/
t

r=  constant.

Substituting from equations (28) and (29) gives,
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+
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(30)

where a,b are constants independent of t, Fe.  Solving this quadratic equation for Fe
2 shows

that we must take the limit t
F cte( )/= -æ Ææ æ æ •1 2 , where c is a constant.  To simplify notation we

denote this limit simply as lim
t
Fe

Æ •
Æ 0

.

Using this double limit, if we compute the left hand side of equation (2) then the distribution

of alpha will be Gaussian near the typical values of A required by equation (2) for longer and

longer t.   This gives:
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D

D

)))) π dNA

(31)

This result is contrary to the result inferred from equation (2), namely dNA .

Of course, equation (2) requires the time to become very large at fixed Fe, hence one might

question the relevance of our procedure that requires double limits to be taken. However, we

see just two possible scenarios that can be considered.  For any field, there will be a
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maximum t for which the distribution of the phase space contraction can be considered to be

Gaussian at ±a .  The first scenario assumes that this time, ( t c Fe= -2 2) is sufficient for

equation (2) to be verified with good accuracy. In this case, equation (31) shows that the

prediction of equation (2) is incorrect, indicating that the CH is violated. The second scenario

assumes that the value of t required for an accurate verification of equation (2) is longer than

c Fe
2 2- .  Clearly, for sufficiently small Fe, the verification of equation (2) becomes out of

reach, and therefore in this case the CH must be violated for any practical purpose. We

conclude that, in accord with Section 4, fluctuations in the Nose`-Hoover near equilibrium

thermostatted dynamics are not consistent with (2) at finite times, and therefore these systems

must violate the requirements of the CH in a rather substantial way.

The results of [9], and the argument here suggest that if equation (2) is to apply to the

systems considered, the error term in equation (2), which is of order O(1/t) for Anosov

systems must be strongly field dependent, and that the error term cannot be neglected at

sufficiently small fields.

We now repeat these arguments assuming that the ESSFT holds.  The steady state version of

the ESFT for thermostatted systems states,

1
t

V A
V A

At e

t e
ln

Pr( )
Pr( )

b
b

J F
J F

∑ =
∑ = -

= - for large t. (32)

Combining this with the CLT applied to fluctuations in the dissipative flux, and adopting the

same procedure for the long time, small field limits, i.e. keeping W W/ /s s
t t

J rJ= =

constant, one obtains:
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A VF
AJ

t
t

t
e

J t

ln
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Pr( )
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= -
= - + = +b e

s
e . (33)

where e1 and e2 become arbitrarily small in these limits.  Note, we again take the limits

simultaneously keeping, F te
2  constant (Note, keeping W W/ /s s

t t
J rJ= =  constant implies

F te
2

 is constant. This is the same limit as that taken for equation (2).).

From (33) we see that,

L F
F
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e

t
F

e

e
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e

t( ) lim= ∫
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=
È

Î
Í
Í

˘

˚
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Æ

0
2

0

2

2
J F b s

. (34)

After some tedious manipulations of the integrals (see [39]) we find that

L F V ds J J s x y ze Fe

( ) ( ) ( ) , , ,= = =
•

=Ú0 0
0 0

b gg g . (35)

The notation ... Fe = 0 denotes an ensemble average taken over thermostatted trajectories with

the external field set to zero.  This is the correct Green-Kubo expression for a linear transport

coefficient L Fe( )= 0 , of a thermostatted system [7].
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6.  CONCLUSION

Our analysis indicates that equation (2) does not apply to equilibrium or near equilibrium

thermostatted steady states. The same holds for the isothermal isobaric systems, and for any

other thermostatted system whose phase space volumes are not conserved by the equilibrium

dynamics.  For equilibrium systems, adaptation of the derivation of equation (2) for Anosov

systems [26] suggests that if the phase space contraction rate is bounded, equation (2) is only

expected to be valid for  A=0, and hence is trivially correct. However, if the phase space

contraction is unbounded, this is not the case (cf Section 4).  Furthermore equation (2) may

not be applicable in practice, even if it does apply in the t Æ •  limit (cf Section 5), and

hence for the practical inapplicability of equation (2), the unboundedness of the phase space

contraction rate does not seem to be necessary. Our conclusion is supported by the inability

of current computer simulation calculations to accurately verify equation (2) for

thermostatted or barostatted near equilibrium dynamics [9, 11, 12].  These calculations show

that the convergence of the left hand side of equation (2) becomes slower and slower as the

steady state approaches an equilibrium state, and it is impossible to determine if equation (2)

is valid.  Even future simulations are likely to lead to the same conclusions, if the trend to

slower and slower convergence rates for equation (2) is confirmed at ever smaller external

fields. This is easy to understand, considering that for fixed values of the external field, the

width of the probability distributions appearing in equation (2) typically has order O t( / )1 .

If the convergence rate of equation (2) drops below O t( / )1 , it becomes impossible (even in

principle) to check its validity. Fluctuations in time averages in the phase space compression

factor would disappear before convergence of equation (2) is achieved. Therefore, we are

lead to the conclusion that thermostatted systems are not sufficiently similar to Anosov

systems for the CH to hold.
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In contrast, all numerical and experimental tests have validated the ESFTs within accessible

observation times.  Moreover, when a corresponding theoretical analysis is made of the near

equilibrium fluctuations, that analysis yields the well known Green-Kubo expressions for the

relevant linear transport coefficients.

We find it hard to understand why changing the thermostatting mechanism from an ergostat

to a thermostat, can have such drastic effects, since for ergostatted systems, the GCFT seems

to correctly describe equilibrium and near equilibrium fluctuations.  In spite of the fact that

there is little difference between the Lyapunov spectra of ergostatted and thermostatted

systems at the same macroscopic state point, evidently ergostatted near equilibrium

microstates may be considered Anosov-like whereas their thermostatted analogues may not.

We interpret our results as implying that the natural measures of thermostatted systems at, or

close to equilibrium, are quite different from the SRB measures, from which the GCFT is

derived. This is undoubtedly related to the fact that at equilibrium, phase space volumes are

not preserved by the thermostatted dynamics, although the implications of this fact are not

fully understood yet.

We can demonstrate this quite clearly through the following example. Consider a constant

kinetic energy system (rather than the Nosé-Hoover thermostatted systems considered

previously in this paper).  For such a system where the equations of motion take the form

given in (19), consider the particular case where C 0i = . We can separate the contributions to

the thermostat multiplier, a = + ∑ ◊ ( )Â [( ) ] /F F pi i e ii
KD 2 0 , that are due to the external field

from those that are intrinsic to the field free system.  In such a case one can show that if one
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rewrites equation (2) so that it refers only to the fluctuations in the phase space compression

factor that are explicitly due to the external field, we then obtain the correct description of

both the near and at equilibrium fluctuations.

Furthermore, in the above example, as the field is increased, the full isokinetic thermostat

multiplier a , could be increasingly dominated by the second, field dependent term. In that

case even if we do not separate the explicit field dependent contribution from the phase space

compression factor it is clear that as the field increases the argument of the FR will be

increasingly dominated by the explicitly field dependent term.  Hence the relation given in

equation (2) will be approximated more and more accurately as the field strength is increased

(as long as fluctuations remain observable).  This is not because the CH is more likely to

apply at large fields (in fact the opposite is true) but could be related to the fact that, at larger

field strengths, fluctuations in the phase space compression factor more closely approximate

those of the dissipation function, W, which is the object of the ESFTs.  These fluctuations are

well behaved and satisfy the ESFTs for the presently accessible observation timescales.  This

is consistent with the numerical results [9, 11, 12], and may explain the better numerical

verification of equation (2) for some systems as the field strength increases, and chaoticity

decreases [9-12].
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