
6. L.Chierchia and G.Gallavotti 1994 (Annales IHP):This paper is quite long (140 pages) but we shall be brief, keeping in store loads of observations, not allminor. As explicitly written by G.Gallavotti, sections 1-8 are preliminary. Much of section 1-7 is devotedto redoing from scratch, often without the proper citations, what has been done in other places. There isa rather long list of authors and works on variants of the KAM theory in a partially hyperbolic situationwhich would have deserved quite speci�c references. We postpone a comment on section 8, which is alsorelated to article 9 below.Section 9 contains de�nitions and the main assertion of section 10, namely the existence of \largehomoclinic angles" is wrong. Speci�cally, Assertion d) of Theorem 3 turned out to be wrong; it was allegedlyproved in Appendix 13, consisting of a long, essentially uncheckable computation. The fact that somethingthere is not plausible should have been a priori clear from the partly heuristic connection between the sizeof the splitting and the \speed of di�usion", as discussed by B.V.Chirikov (1979) and formalized (but notrigorized) in [RMS]. The fact that it took so long to spot this implausibility is essentially due to the size ofthe paper and the way it is written, which make it extremely hard to detect such crucial conceptual gaps.Sections 11 and 12 depend on section 10 and are thus invalidated as well. With more work, it seemsthat the existence of drift in the celestial mechanical model discussed there can and will be proved (see 10below). Such a result would present an interest from the point of view of celestial mechanics but will not showthe existence of di�usion (or drift) for the perturbation of an honest \a priori stable" and nondegenerateintegrable Hamiltonian. Simply because the model studied in Sections 11-12 is not of that kind and presentssome speci�c and essentially simpler features.Note that with a method as simple as the one employed in section 8, the transition times that one �ndsare essentially forced to be at least exponential (see below equation (8.21)). However it is expected (see[RMS] and/or [Comp]) that the drift in such a priori unstable systems is generically polynomially slow inthe small parameter. This is likely to hold true in this case (but has not been proved). At any rate, theexponentials appearing in section 8 are simply an artifact of the method used; note that at the beginningof the paragraph containing formula (8.22) it is acknowledged that they constitute at best a convenientarbitrary choice. They cannot possibly be connected to any version of \Nekhoroshev's theorem", whichcertainly does not apply in the a priori unstable case at hand.4



9. G.Gallavotti 1997 \Fast Arnold di�usion in isochronous systems" (preprint, September 1997):The comments below apply to the version of this paper deposited in the University of Texas electronicarchives in September 1997. The �rst eight lines are very di�cult to interpret. In particular, one reads thatthe geometric (nonvariational) method employed in section 8 of article 6 above \maintains its interest inspite of the better estimates coming from variational methods because it is the only one which, so far, isrobust enough to apply to anisochronous systems". However, precisely the variational papers quoted by theauthor in this very paragraph deal with anisochronous systems, namely Arnold's original system.In section 2 we learn that G.Gentile's 1995 paper is \the basic paper" on KAM for 1-hyperbolic tori.Note that in [Ge], it is not clear that the proof is complete and indeed we learn in the present paper that \aproof is essentially" in [Ge]. In any case it applies only to a rather particular case. One should recall thatthe old-fashioned \classical" proofs are complete, were published long ago and apply to much more generalsituations.In the conclusion of section 3, the author stresses \the conceptual di�erence with respect to the vari-ational approach, which accounts for the impressive di�erence" for the bounds on the transition times.Furthermore, in section 5 we read: \The result is an extremely large di�usion time T (namely exponential inN ). Nevertheless the estimate that comes out of the above scheme seems essentially optimal. And then theproblem is: `how is it possible that by other methods (e.g. variational methods of [Be],[Br]) one can get farbetter estimates?' A reason may be that the variational methods are less constructive: less so than above."The use of the term \optimal" in this passage is misleading. It would be more accurate to say: with thissimple direct approach one cannot do better. Furthermore, the reasoning suggested here and developed atlength in the article to explain the di�erence in di�usion times is not correct. The variational techniques in[Be], [Br] do keep track of the location of the constructed orbits, contrarily to what the author asserts severaltimes. Moreover, geometric methods have been pushed beyond the \[CG]-method", yielding techniques andresults that are not drastically di�erent from the variational ones.Section 6 contains the original result of the paper (theorem 2). The two page justi�cation is quite hard5



to follow (beware of the unusual de�nition of �) and cannot be considered as providing a formal proof. Butone can make the following possibly important observations which if correct simply invalidate the paper: Itis not clear from the last line of the paragraph how one gets the upper bound on Ti, nor even how to readthis expression. Apparently (taking the exponent i to be inside the log), Ti is supposed to increase linearlywith i, producing the stated bound on the drift time (because PNi=1 i = O(N2)). This is hardly plausibleand in sharp contrast with what intuition suggests and with what actually happens in the variational papers.It implies in particular that as � (or ") tends to 0, one constructs orbits whose starting points do not tendto the �rst torus; indeed the ergodization time E0 and the time T1 remain bounded independently of �.Lastly a word on appendix 2. The simple reasoning in [G1] proves a simple estimate for the �lling time,with exponent � +d+1. Here too, it is likely that this estimate is \optimal", given the method. But in fact,using a more re�ned approach, S.Dumas improved the exponent to � + d=2 (J. Dyn. and Di�. Eq. 1991),and improving further on that, J.Bourgain, F.Golse and B.Wennberg produced the probably optimal answeras far as the exponent is concerned; it is equal to just � (see Commun. Math. Phys. 190, 1998). All this isin sharp constrast with the passing mention \see [BGL] (sic) for an alternative proof".Nota bene: Subsequently and because a �rst version of the present review was circulated, another version ofthis preprint has been posted bearing the same date (September 9th 1997) as the old version. Most remarksmade above still apply and the texts are almost undistinguishable, bearing in particular the same title andsame date. Yet the second version does not undertake to prove a polynomial but only an exponential estimatefor the instability time. In particular, the �rst lines of section 6 and the paragraph containing (6.5) havebeen slightly modi�ed; especially in the line preceding formula (6.5), the quantity N2 has been replaced with2N : a substantial mathematical di�erence. This paper was written in order to illustrate and improve on the\[CG]-method", i.e. the direct geometric estimates of section 8 in article 6 above. Section 6 of the presentpaper is supposed to \add a new idea". In the present state, it does not present a mathematical proof ofwhat is now (i.e. in the second version) asserted; moreover what is asserted is weaker than what has alreadybeen rigorously proved via other methods.10. G.Gallavotti, G.Gentile, V.Mastropietro, \ Separatrix splitting for systems with three timescales" (sub-mitted to Commun. in Math. Phys. in October 1997; hereafter [GGM1]), and \Hamilton-Jacobi equation,heteroclinic chains and Arnold di�usion" (�rst deposited in the Texas archives in December 1997; hereafter[GGM2]):These two manuscripts deal with a special and relatively simple case of the multidimensional splittingproblem, with a view of using the results to study a (degenerate form of) Arnold di�usion, in particular toprove the existence of di�usion in the example of Sections 11-12 of article 6 above (they do not achieve thisgoal though). This latter aspect is the subject matter of [GGM2] and it is a little odd that the material hasbeen spread out over two articles (apparently [GGM2] was not meant for publication when �rst written up;but it was deposited in the archives).First the fact that three timescales are present precludes in e�ect the presence of small divisors (asmentioned in passing on l.15 of p. 23 of [GGM1], although this is one of the crucial points here). Thisfact is of course well-known and has been used by many authors over the years: frequencies which arenot of the same order of magnitude cannot possibly \resonate". This says that we are not facing a trulymultidimensional (or multifrequency) problem from the point of view of perturbation theory, inasmuch asarithmetical di�culties are absent. From the point of view of \di�usion" it can be considered as a localproblem modelling the vicinity of a double resonance in a 3 d.o.f. near integrable Hamiltonian where twosimple resonances meet, with one being \weak" and the other \strong".The application of KAM theory in this setting is well-known. Especially, theorem 1 presented in [GGM1]is not new, including integrability on the perturbed invariant manifolds (cf. especially works by S.Gra� and6



D.Treshev). The existence of \many" invariant tori together with the attending invariant manifolds isaddressed again in [GGM2], leading to theorems 2 and 3 there. These results are not new either: the idea ofcombining higher order averaging (normal forms) with KAM theory is actually quite old. Its �rst appearancemay perhaps be traced to a paper by A.Neishtadt (J. Pure and Applied Mech., 1981) in which one can �nd inessence the results presented here, the proof using iterative methods being quite short and simple. One mayalso look at a 1984 paper by the same author published in the same journal. More recently, independentworks by several authors, notably A.Morbidelli and A.Giorgilli, L.Niederman as well as A.Delshams andP.Gutierrez have pushed related ideas further on (of course the works of these authors do not simply repeateach other although there is a certain overlap in the results and techniques). We note in passing that thereference list of [GGM2] comprises 12 items, of which 11 are purely \internal" (note also that even the titleof [GGM1] is wrongly quoted there, in a signi�cant way...) and the last one refers to the work of L.H.Eliassonwhich originally inspired the development of these \direct methods".Returning to [GGM1], the bulk of it is devoted to proving theorem 2, that is to vindicate the \naive"Melnikov computation. Before analysing it, it should be recalled that the hitherto most successful track interms of getting lower bounds for the splitting distance or angle was initiated in a remarkable 1984 paperby V.Lazutkin. This paper deals with the two dimensional case, more precisely the case of the standardmap, which is signi�cantly more di�cult than the now standard example of the rapidly forced pendulum(or variants of it). The results for the standard map are not complete there but part of the method wasthen successfully applied to Hamiltonian 
ows (as opposed to maps) with small parameters (as opposedto without a small parameter). It turned out that this part does extend to higher dimensions. The �rstimportant result is precisely to bound the di�erence between the splitting angle and the result of the linear(Poincar�e-Melnikov) computation, and the key point is a direct analog of the extension lemma which was �rstused by V.Lazutkin. In turn, the underlying idea about the usefulness of this extension lemma is containedin a \trivial" (yet crucial!) lemma in elementary harmonic analysis (or one-dimensional complex functiontheory; it amounts to lifting a contour of integration) which says that if one can get a uniform bound foran analytic function over a \wide" horizontal strip centered on the real axis, one gets a much better boundon the restriction of the function to the real axis. A recent paper by A.Delshams, V.Gelfreich, A.Jorbaand T.Seara ([DGJS]; now published in CMP, 1997) uses this method in the multidimensional isochronouscase. Note that the \trivial" lemma remains one-dimensional, as it concerns the plane of the complextime. A paper by M.Rudnev and S.Wiggins ([RW]) dealing with the anisochronous case and using the sametechnique has appeared in Physica D (1998) but as it stands contains a mistake in its theorem 2.1 (whichalso invalidates theorems 2.2 and 2.3 as stated). An erratum will be shortly issued by the authors and alarge part of the statements can hopefully be recovered. It is quite important to insist that both papers([DGJS] and [RW]) do confront (to various extents) the arithmetic questions inherent to the problem, aswas �rst explained in [RMS]. Speci�cally, if the perturbation is polynomial, as in the original example givenby Arnold and as in [GGM1,2] no small divisors enter in the denominators of the Melnikov integrals, nor inthe higher order terms of the perturbation series. As a result, the analysis is greatly simpli�ed and this case(corresponding to a resonance of maximal order) can be viewed essentially as a parametrized one-frequencycase. In particular, evaluating the Melnikov function does not pose any di�cult problem and the exponent inthe exponentially small splitting is the same as in the one-frequency case. It is independent of the dimension(which in [GGM1,2] is the lowest possible). These phenomena underly the analysis in [RMS] and this isprecisely why the original Arnold model was generalized in that paper. Indeed it was recognized there thatin the generic case of a perturbation with in�nitely many harmonics (and no gaps in the Fourier series),small divisors (corresponding to secondary resonances) appear in the denominator of the Melnikov function,making its evaluation much harder. But this is also a much more interesting case as it was found thatthe splitting exponent should then coincide, via a key heuristic computation appearing in [RMS], with the7



optimal stability exponent derived there. At present the rigourous evaluation of the Melnikov function underthese generic conditions has been performed in [DGJS] in a very special 3D-case and in x6 of [RW] (whichis self-contained and independent of the error in theorem 2.1) for the general 3D-case. Higher dimensionalsituations have not been touch and seem di�cult to attack, for lack of a higher dimensional analogue ofcontinuous fractions.Returning to theorem 2 in [GGM1] it seems that the isochronous case (Hamiltonian 2.1) can be treatedas in [DGJS]. The only case which is not formally covered in the existing literature (taking into account theerror in [RW]) would thus be the anisochronous variant of theorem 2. But actually the main point againis that the cases investigated in the paper do not really address the di�culties which are speci�c to themultifrequency case, as explained above. It should also be added that it is unclear whether the argumentspresented in [GGM1] (x6 and x7) can be viewed as a complete \proof" of theorem 2. It seems that it wouldconstitute a formidable task to try and give a complete self-contained version of the arguments presentedthere, especially in the anisochronous case discussed in x7 (see many examples of appeal to outside materialin these two sections or to the fact that one could \follow the same path" as somewhere else).Applications of the results to Arnold di�usion, more properly to the construction of heteroclinic chains(the authors do not take up the subject of constructing shadowing orbits, which is a separate issue) appear inx8 of [GGM1] and x6 of [GGM2]. The \easy case" of isochronous (hence gapless) systems which is dealt within x8 of [GGM1] is really a toy problem and the application is essentially obvious, as the authors themselvesseem to imply. The application to anisochronous systems in [GGM2] leading to theorem 4 there amounts tothe observation that the splitting is independent of the diophantine condition under the given circumstances(widely separated timescales, polynomial perturbation); see (ii) on p.10 of [GGM2]. This is a nice elementaryremark, which under the given circumstances provides a way out of the the pervasive problem of \bridgingthe gaps", but one should recall that this is indeed a simpli�ed setting, whose investigation does not reallyhelp attacking the core of the matter. In some sense, the situation is quite reminiscent of the original exampleof Arnold, in which the possibility of applying an implicit function theorem relies on the same fact. Morejusti�cation would actually be needed in the example given by Arnold; it is partly provided in a recent paperby P.Perfetti.As mentioned above, these papers still do not �x the mistakes in article 6 above. More precisely, theorem2 in [GGM1] proves that essentially the opposite of what is stated in section 10 of 6 is true. Namely thesplitting is exponentially small and the linearized part gives the correct answer. Without the large angletheorem at hand, proving the existence of drift in the example of sections 11-12 of article 6 is not so easy,but perhaps can be achieved (cf. the rather hazy discussion in x8 of [GGM2]). Again though it would stillnot provide a \real" example of Arnold di�usion i.e. one which occurs when perturbing a genuine \a prioristable" integrable Hamiltonian. But it would be interesting as an example drawn from the \real world".11. Papers on \twistless tori"; in particular \Twistless KAM tori etc." by G.Gallavotti, Reviews in Mathe-matical Physics 1994 (hereafter [G3]), \Twistless KAM tori" by G.Gallavotti, CMP 1994 (hereafter [CMP])and \Non recursive proof of the KAM theorem" by G.Gallavotti and G.Gentile, Erg. Th. and Dyn. Syst.1995 (hereafter [ETDS]):The �rst remark to be made is quite simple: none of the papers above contains a result nearly asgeneral as the one derived in the Appendix below. More precisely, in the notation of proposition 1 of theAppendix, the above papers address the cases where g = 0, f is independent of I1 and is indeed an eventrigonometric polynomial in the angles �. The name \Thirring model" was coined by the authors to referto this special case. We add that the appendix gives a proof which is complete, granted only the originalpaper by Kolmogorov and the detailed elementary estimates given in a later paper (see the appendix forreference). Moreover the pace in the appendix is leasurely and the core of the proof is hardly two-page long.8



Taking this remark into account and the words of the authors of the papers at their face value, weshall succinctly address the following questions: How do \direct mehods" relate to \classical" (i.e. iterative)methods? What is the role of \physics" in these matters? It goes without saying that we do not pretend toactually answer these questions; we shall be content with providing some elements and leave it to the readerto draw conclusions if she or he feels the need to do so.As to the �rst question, we �rst recall that it all started with the work of H.Eliasson who proved in a\direct" way that the Linstedt series describing the quasi-periodic solutions (invariant tori) in a KAM-typesituation do indeed converge. His proof was a tour de force and several people (especially the authors of thepapers reviewed here) undertook to understand and clarify it, giving several expositions of related results,including the ones reviewed here. What is unclear is to what extent the twistless property (not mentionedin H.Eliasson's work) was supposed to be a new result, not accessible to iterative methods (the appendixmakes it clear that it is quite accessible and even easy).In [G3] we read (p.346, remark 2): \If some of the inertia moments Ji [corresponding to ��1 in thenotation of the appendix] are +1 the above theorem is an easy consequence of the classical KAM theorem(or better of its proof)". This statement corresponds to the case � = 0 in the appendix and correctly statesthat the iterative methods do recover this case. The quotation then continues with: \However the boundb [radius of convergence] obtained via the classical proof depends on the twist rate, i.e. on the maximumamong the Ji which are not +1 [underlined by the authors], and diverges as the rate approaches 0. Thisnon uniformity is quite surprising but it is an artifact of the classical proof (as a direct careful analysis ofthe latter also shows)." This seems to imply that the twistless property can be seen only via direct mehods,an incorrect statement in view of the appendix. We apologize to the reader for dwelling too long on thisdiscussion but it seems to us that this is quite an important point: Have new results been proved using directmethods? Have classical results been recovered in their full generality using direct methods? The answer toboth questions is simply \no". Returning to the twistless property we look as the author suggests at page363 in [G3]. There again one should distinguish between the \no-twist" case (� = 0) and the \twistless"case (i.e. � ! 0; it would be more appropriate to call it the \vanishing twist" case). The former case istrivial when the perturbation is action independent, in particular a trigonometric polynomial (the \Thirringmodel"); this takes care of the remarks around (4.16). Concerning the twistless case we read (p.363): \Theconvergence of the formal series for the tori equations studied in Sec. 7 will yield a radius of convergenceb�1, independent of the Ji (a result stronger than the usual KAM theorem relying on the twist property).Hence we show, by direct bounds, that the just posed twistless KAM problem has a solution (a fact thatcould be checked also by a careful examination of some of the classical proofs of KAM theorem, as mentionedin the introduction)." Again it is quite hard to interpret this quotation, as the two parenthetical remarksseem to contradict each other (at least in spirit) and as in the introduction we learned (as quoted above)that the \non uniformity is quite surprising but is an artifact of the classical proof". Apparently the secondparenthetical remark says that the \artifact" could be repaired; the appendix to the present paper simplyshows that it does not exist. In any case the conclusions of this rather intricate discussion are very brie
ysummarized in subsequent papers. In [CMP] we simply read (�rst page of the paper): \The results willbe uniform in T [= � of the appendix] (hence the name \twistless": this is not a contradiction with thenecessity of a twist rate in the general problems)." We leave it to the reader to appreciate how much noveltyis claimed here and we apologize again for this perhaps unnecessarily detailed discussion, but the materialis indeed quite abundant, perhaps strikingly so compared to the mere three pages of the appendix below.In fact we also have to brie
y address an even more down-to-earth question: do papers using directmethods always prove the statements they contain? Again we shall not answer the question but simply giveelements drawn from [G3]. This paper is 70 page long and contains two results, labeled as theorems 1 and2. We are here interested in the �rst one which is actually called \twistless KAM". As mentioned already,9



the setting is that of the \Thirring model". After 40 pages of preparation the reader comes (in x7) to the\proof" of theorem 1. Strangely enough the �rst thing she or he is told is that \this section has heuristicnature". Then one learns the bad news that one has to impose an extra arithmetical condition (condition(7.1)) which was not mentioned in the statement of the theorem. This \strong" diophantine condition isdiscussed again in [CMP] and [ETDS] and it �nally emerges that it is super
ous. Yet the conclusion of allthis in [ETDS] is quite curious. The main goal of the paper is to show that \in fact such an hypothesis canbe relaxed" (i.e. the strong diophantine condition is unnecessary; note that of course it does not appearin the appendix to the present paper). Yet the authors conclude (�rst page, second paragraph): \In ouropinion this shows that a hypothesis like the strong diophantine condition, or something similar to it, is verynatural, as it simpli�es the structure of the proof [...]." So the assumption is both super
uous and natural;why not conclude that the proof is not \natural"? Returning to [G3], he \heuristic" section 7 closes with thepromise of a \complete analysis" in Appendices A3 and A4. It does not leap to the eyes that Appendix A3is less heuristic than section 7: it contains one clear statement, namely Bruno's lemma, which is reprovedin Appendix A4 and indeed constitutes the entire content of the latter appendix. The rest of Appendix 3consists in a discussion which is quite hard to follow and leads to a semiformal statement italicized at thebottom of p.407. It seems that armed with this statement, one should be able to conclude the proof of thestatement of theorem 1, supplemented by the unexpected arithmetical condition (7.1). This analysis couldbe pursued in much more detail and would apply to many other papers. This is particularly the case for the\proof" of the anisochronous case in [GGM1] section 7 (see item 10 above), which closes with an appeal tothe techniques of [G3].Now a few words about the role of \physics". Note that the remarks which follow are in part subjectiveand personal and should not be put on the same footing as the many mathematical facts we have tried togather in these reviews. In the papers we are discussing, as well as in many others, the vocabulary of physicsfrequently enters: Thirring model, renormalizable quantum �eld theory, ultraviolet divergence, Feynmannintegrals etc. It is certainly not easy to understand how far this is technically helpful, i.e. how much ofthe knowhow of these �elds actually enters in a meaningful way. For instance, as we saw already, the term\Thirring model" is simply shorthand for \trigonometric polynomial". In the classical iterative proof, lookingat this particular case does not help; it simply obscures the concepts, and this may be why proposition 1of the appendix was not stated and proved before. In the attempts at using renormalization techniques inorder to prove more than what the iterative methods yield, it is natural (but that could be misleading too)to start with such a simple model. Indeed D.Escande for example used an even more particular model (the\two-wave Hamiltonian" which is a particular case of the \Thirring model") and derived very interestingproperties, most of which have remainded beyond the possibility of a rigorous proof (by any method). Otherresearchers like B.V.Chirikov have of course taken a decidedly \physical" path and gained some preciousinsights which, on the other hand, are very di�cult to prove or disprove. Now in the articles under scrutinyhere, no such \physical statements" are present and the goal is to prove mathematical statements whichare in fact quite within reach of ordinary mathematical techniques. Rigorous versions of renormalizationtechniques still do not exist in this setting but certainly then it would be interesting to draw from \physics",proving statements which \mathematicians" just did not think of or had no tools to vindicate. This seemshardly to be the case here.Concerning �eld theory, we simply add the following. Hard graphical enumerative techniques havebeen developed in mathematical �eld theory. In particular, the techniques developed by C.Itzykson andcoworkers enabled them to derive some aymptotic estimates which were instrumental in the proof of theWitten's conjectures by M.Kontsevitch (see his paper in CMP, 1992, section 3). There some key featuresare present: namely one considers graphs which are not of genus 0, a fortiori have non trivial homotopy (arenot trees) and the automorphisms of the object are one of the main sources of di�culty. In the papers under10



review here, none of these features is present, and it is unclear what is gained by the translation of elementarygraphical enumerative arguments into \�eld theory". We close with a quotation from [GGM1] (see item 10),�rst page of section 6: \In the present case the graphs will be, topologically, trees: very unusual graphs fromthe point of view of �eld theory, where loops are often the main source of interest and non triviality. On theother hand the graphs have nodes with arbitrary large coordination number: also unusual in quantum �eldtheories (with polynomial interactions)."Appendix: twistless invariant tori in nearly integrable Hamiltonian systemsIn this note we prove a result about the preservation of tori in nearly integrable Hamiltonian systems,which are \twistless" in the sense of [G1], [G2]. The result follows from a variant of the scheme originallyproposed by A.N.Kolmogorov in [K], which has been nicely detailed in [BGGS] \with a mostly pedagogicalintent". We shall follow the latter paper, which itself closely follows [K], including in the notation; we useLie transforms as in [BGGS] as they appear to be somewhat more convenient than the canonical transformformalism of [K]. Because by now (1998) this or essentially equivalent algorithms have been repeated hundredsof times we shall be somewhat sketchy in the exposition but it should be clear that the proofs below arecomplete, granted only [K] with the estimates spelled out as in [BGGS].Let us brie
y and incompletely recall the well-known setting; for details we refer to [BGGS]. The onlyminor di�erences with this paper (and [K]) are notational. Here we shall use (I; �) rather than (p; q) for theaction-angle variables and in fact we need to divide these into two groups. So let n = n1+n2 be the numberof degrees of freedom, and let (Ik ; �k) 2 Rnk�Tnk (k = 1; 2); we write I = (I1; I2) 2 Rn, � = (�1; �2) 2 Tn,and we adopt a similar notation for all the intervening quantities, which formally live in the tensor algebraof the phase space (I; �). We use a rather concise notation for these tensorial (scalars and matrices in fact)quantities but that should cause no ambiguities. For example, if ! is a frequency vector and I an actionvector, we write indi�erently !I or ! � I for the ordinary scalar product of ! and I ; in the same vein, CI2should be read as CI � I , with C a square matrix. The result reads as follows:Proposition 1: Consider the nearly integrable Hamiltonian:H(I; �) = !I + 12C1I21 + 12�C2I22 + "f(I1; �) + "�g(I; �);where " and � are real parameters. Assume that the symmetric matrices C1 and C2 are invertible, that thefunctions f and g are de�ned and analytic near I = 0, and that the vector ! is diophantine (j! � kj � 
jkj��for k 2 Zn n f0g and some 
 > 0, � � n� 1).Then for j�j � 1 and j"j � "0 with "0 > 0 independent of �, there exists an invariant tori of frequency! for H; it is "-close to I = 0 (again independently of �) and the 
ow on it is conjugate to the rotation withfrequency !.Remarks: There are several variants of the statement which could be proved in the same way. Here f mightdepend on " and g on " and �, in which case one requires analyticity in " (but not necessarily in �). Forrather trivial reasons we need to work on a bounded interval in � so we assume w.l.o.g. that it is smallerthan 1.For a given � 6= 0 this is essentially Kolmogorov's statement. Not quite because we did not want thestatement to be too cumbersome but that would be easy to �x. Namely we could consider a HamiltonianH(I; �; "; �), analytic in (I; �; ") and C2 in � say, and give the appropriate conditions on its partial lin-earization at � = 0 which would lead to a seemingly more general statement than the one above and wouldrecover the usual statement for �xed nonzero �. Note however that proposition 2 below does reduce for�xed � 6= 0 to the parallel statement in [K] (see theorem 2 in [BGGS]). For � = 0, one is dealing with the11



!2-quasiperiodic perturbation of a fully nonlinear integrable Hamiltonian. The statement says that the limit�! 0 is actually regular, although the partial twist matrix �C2 vanishes (hence the name \twistless tori").Another remark is that we could consider � as an n2-vector i.e. deal with \multiple actionscale" Hamil-tonians, rather than the two actionscale case of proposition 1. This ampli�cation would come essentially froma proper reading of the formulas: � would be an n2-vector, �I2 would mean componentwise multiplication(not scalar product), �C2I22 would mean (�I2 � C2I2) etc.Finally, we note that most of the modi�cations and observations which have been made during the past40 years apply to this case. We shall very brie
y discuss a few well-known issues at the end.In order to prove proposition 1, one �rst recasts (as in [K] and [BGSS]) the Hamiltonian into Kolmogorovnormal form. Indeed proposition 1 is an immediate consequence ofProposition 2: Consider the Hamiltonian:H(I; �) = !I + 12C1(�)I21 + 12�C2(�)I22 + "A(�) + "B1(�)I1 + �"B2(�)I2 +Q(I1; �) + �R(I; �);where ! is diophantine, the averages C1 and C2 of the symmetric matrices C1(�) and C2(�) over � 2 Tnare invertible, A(�) has zero average and Q (resp. R) is of order I31 (resp. I3). Here all the interveningfunctions are supposed to be de�ned and analytic in their respective arguments near I = 0. The conclusionis the same as in proposition 1.Remark: In both the above propositions, we chose (in contrast with [K] and [BGGS]) to make the dependenceon the paramaters " and � explicit, simply because there are two of them, and we hope this is typographicallyhelpful. Yet we have dropped this dependence from the functions and we hope that the reader will mentallyrestore it. In fact, since the proof is iterative, one can and needs to assume that the functions may dependon the parameters.As noted above, the proof of proposition 2 is almost identical to its analog in [K] (and [BGGS]). So weshall be sketchy and mention only the few points of di�erence.First write H = H0+"H1 where H1 = A+B1I1+�B2I2 is the perturbation which we want to eliminaterecursively. Let � be the auxiliary Hamiltonian (the analog of the generating function in terms of Lie series)by means of which we shall perform one step of the perturbation scheme. Here we choose (again essentiallyas in [K]): �(I; �) = � � �+X(�) + Y1(�)I1 + �Y2(�)I2;where � 2 Rn, the scalar function X and the vector functions Y1 and Y2 (of sizes n1 and n2 respectively)have to be determined. Note that for � 6= 0 the I2-component �2 of the mean translation of the torus is apriori of order 1 (not �).We perform one step of the perturbation scheme; the convergence will follow exactly as in the usualcase (cf. [BGGS] x5). Denote by La the Liouville operator associated to a function a; that is La(b) = fa; bgis the Poisson bracket of a with a function b. We modify H by taking the time " of the 
ow of �; so weget the new Hamiltonian H 0 = exp("L�)H and as usual we have to pick � so as to make the perturbativeterm smaller. We keep the same names for the variables when refering to H 0 (this is one of the convenientfeatures of Lie series; see e.g. [BGGS] x3.1) but the new functions will get \primed" names (A becomes A0etc.). Again here we closely follow x4 of [BGGS] which completely explicits a few lines in [K].The function � is determined by solving the \homological equation", namely here by requiring that:H1 + f�;H0g = cst+O(I21 ) + �O(I2):12



So we compute the left-hand-side:H1 + f�;H0g = �� � ! � !@X@� +A(�)+ [B1(�)� C1(�)(�1 + @X@�1 )� !@Y1@� ]I1+ �[B2(�)� C2(�)(�2 + @X@�2 )� !@Y2@� ]I2 +O(I21 ) + �O(I2):Here one should be a little careful when unravelling the notation: the keypoint is that in the last two lines,which essentially duplicate the usual result, one gets the partial �-gradients of the scalar function X(�) butthe total gradients of the vector functions Y1(�) and Y2(�).The system to be solved thus reads:8><>:! @X@� = A(�)! @Y1@� = B1(�)� C1(�)(�1 + @X@�1 )! @Y2@� = B2(�)� C2(�)(�2 + @X@�2 ):The �rst equation is the same as usual and can be solved because A(�) has zero average and ! is diophantine.The last two equations are identical and indeed exactly duplicate the usual one (see [K] or eq. (4.14) in[BGGS]). So they can be solved for the appropriate (and unique) choice of � = (�1; �2), because the averagesof C1(�) and C2(�) are invertible, and using again the fact that ! is diophantine. Moreover, the estimateson �, X , Y1 and Y2 are clearly the same as usual, and for good reasons.This essentially �nishes the proof. We mention for completeness the last insigni�cant departure fromthe usual scheme that needs be brought in the evaluation of the remainder H 0 �H � f�;H0g. To this end,one has simply to estimate f�;H1g and f�; f�;Hgg (second order Taylor expansion; see [BGGS] x3.1). Theminor point we want to make is that the �-independent and the �-dependent terms should not be lumpedtogether. More precisely, one starts with estimates for A, B1 and B2 and wishes to derive similar estimatesfor A0, B01 and B02. As mentioned above, one �rst gets estimates for �, X , Y1 and Y2, the exact same asusual. Now decompose H1 and � as H1 = H10 + �H11 , � = �0 + ��1, with H11 = B2I2 and �1 = Y2I2; eachof H10 , H11 , �0 and �1 has thus already been estimated. It is now immediate to separately estimate the order0 (w.r.t. �) and order 1 parts of f�;H1g and f�; f�;Hgg. Here H can be left as is and one does not evenhave to expand; just count the number of terms. This is a minor point, and the rest literally follows thestandard case.We will �nish with some remarks on well-known issues, namely nondegeneracy conditions, arithmeticalconditions and smoothness conditions.Concerning the �rst of these topics, we required here that C1 and C2 be invertible, which is a con-dition on the second order jet of the unperturbed Hamiltonian. This can be considerably weakened, asin particular the work of H.R�ussman demonstrates. In order to apply his results in the present setting,consider again a Hamiltonian H(I; �; "; �) which is nearly integrable (and integrated), i.e. H(I; �; 0; �) isactually �-independent. The nondegeneracy conditions will then be imposed on the �-independent functionsH(I; �; 0; 0) and @H=@�(I; �; 0; 0), by considering their jets (collections of higher order derivatives) up toa certain order. Above we simply restricted attention to the Hessian matrices (order 2 jet) of these twofunctions.Coming to the question of the arithmetical conditions, we would like to call attention on the recentpapers by A.Giorgilli and U.Locatelli (ZAMP 48, 1997 and MPEJ 3, 1997) in which it is shown how bysuitably modifying (yet again...) Kolmogorov's original scheme, one can prove the preservation of invarianttori for frequencies satisfying Bruno's condition (only the case of a trigonometrical polynomial perturbation13



in the angles is explicitly treated there). We also recommend the detailed introductions of these papers. Itis plausible that this work can be adapted to the cases investigated in the present note.Finally concerning smoothness conditions, the usual remarks are in order and again adaptation from thestandard case to the one at hand should be fairly straightforward (although possibly cumbersome). Since wehave been working essentially straight from Kolmogorov's original paper, it may be instructive or amusingto insert in closing a short historical remark. Contrary to what is sometimes asserted, Kolmogorov waswell aware of the fact that the phenomenon he was discovering is not speci�c to the analytic category. Yetthis point seems to have given rise to the only \error" or say inaccuracy in [K]; he writes: \In essence, theconsiderations below are related to real functions, but impose rather signi�cant conditions on the smoothnessof the function H(q; p; �) [� is the small parameter], stronger than in�nite di�erentiability. For simplicity, inwhat follows we assume that the function H(q; p; �) is jointly analytic in the variables (q; p; �)."Smoothness is clearly a minor issue in [K], but it should be recalled that Kolmogorov was actually anexpert on the subject. Indeed he started his \career" in 1922 (the result was published in 1923) at the ageof 20 when, taking advantage of the NEP, he exhibited a Lebesgue integrable periodic function with almosteverywhere divergent Fourier series. This gained him immediate recognition, especially in France. Yet inthe above quotation, he seems to imply that one should impose Gevrey-type conditions on the perturbation.As is well-known, this inaccuracy was corrected by J.Moser who showed that via an appropriate use ofJ.Nash's smoothing operators, one can actually deal with perturbations which possess only a �nite numberof derivatives.References[BGGS] G.Benettin, L.Galgani, A.Giorgilli, J.-M.Strelcyn, A proof of Kolmogorov's theorem on invarianttori etc., Il Nuovo Cimento 79 B, 1984, 201-223.[G1] G.Gallavotti, Twistless KAM tori, Commun. in Math. Phys. 164, 1994, 145-156.[G2] G.Gallavotti, Twistless KAM tori etc., Reviews in Math. Phys. 6, 1994, 343-411.[K] A.N.Kolmogorov, On the preservation of conditionally periodic motions, Doklady AN 98, 1954,527-530.

14


