Report-no: FM 98-14; Authors: G. Benfatto, G. Gentile, V. Mastropietro. Title: Peierls instability for the Holstein model with rational density. Abstract: We consider the static Holstein model, describing a chain of Fermions interacting with a classical phonon field, when the interaction is weak and the density is a rational number rho=P/Q, with P,Q relative prime integers. We show that the energy of the system, as a function of the phonon field, has one (if Q is even) or two (if Q is odd) stationary points, defined up to a lattice translation, which are local minima in the space of fields periodic with period equal to the inverse of the density. Key Words: Fermi systems, Peierls instability. G.Be.: Matematica, Universita' di Roma 2, Viale Ricerca Scientifica, 00133, Roma, Italy. G.Ge.: Matematica, Largo S. Murialdo, Universita' di Roma 3, V.Ma.: Matematica, Universita' di Roma 2, Viale Ricerca Scientifica, 00133, Roma, Italy. e-mail benfatto@mat.uniroma2.it gentile@ipparco.roma1.infn.it vieri@ipparco.roma1.infn.it