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Istituto Matematico dell 'Universith - Piazzale A .  More, 00185 Roma,  I tal ia 

(ricevuto il 9 Settembre 1981) 

Summary. - -  A Hamiltonian with N degrees of freedom, analytic pertur- 
bation of a canonically integrable strictly nonisoehronous analytic Hamil- 
tertian, is considered. We show the existence of N functions on phase 
space and of class C ~ which are prime integrals for the perturbed motions 
on a suitable region whose Lcbesgue measure tends to fill locally the 
phase space as the perturbation's magnitude approaches zero. An applica- 
tion to the perturbations of isoehronous nonresonunt linear oscillators 
is given.  

1 .  - I n t r o d u c t i o n .  

Although it follows from the small-denominator theorem proof tha t  the 

small perturbations of integrable Hamil tonian systems are not ergodie for the 

Liouville measure and that ,  therefore, there must  be some prime integrals 

for their motions, the prime integrals'  properties have not  been investigated 
in detail. 

Here we show tha t  the small-denominator theory  contains all information 

needed to deal with the above questions, at least as far as existence and basic 

regularity are concerned. 

We shall only consider analytic Hamil tonian systems iutegrable by analytic 

canonical transformations.  

Calling A c R ~ the N action variables and ~ ~ T ~v the N conjugate angles (*), 

we suppose thar the unper turbed Hamfltonian he and the per turbat ion ]0 are 

(*) T ~ =  standard torus in N dimensions = ([0, 2z] ~v with opposite sides identified}. 

271 



278 L. CHIERCHIA &rid G. GALLAVOTTI 

defined on a set of the form V •  ~, V c R  N open sphere with radius r > 0 .  
Thus the  Hamil tonian will be wri t ten as 

(1.1) H o ( A ,  q~) = ho(A) -{- ]o(A, q~) . 

We assume ho ~nd ]o ~nalytic:  more precisely, if T N is iden t i / i ed  with 
subset of C ~ via the map 

~o = ( ~ ,  ..., q ~ ) ~ z  = (z,, ..., z ~ ) =  (exp [ i~] ,  ..., exp l i ly])  

and if V is also regarded as a subset of C N, we suppose that ,  if we pu t  

(1.2) r ~o; A) = {(A', z)[(A', z) e C .~, [A I -- A,[ < Qo, 

exp [--~o] < ]z~] < exp [~o], i = 1, 2, ..., N} ,  

(1.3) W(eo, ~:o; v) = U (7(eo, ~o; A) D V•  

t hen  the  functions ho, fo regarded as functions on W(~o, ~o, V) n V • T ~ ex tend  
to  functions holomorphie in W(~o, ~o, V) which will be denoted with the s a m e  

symbols.  
We can extend the differentiation with respect to q~ in a na tura l  way by  

set t ing 

~q~k izk ~zk ' k 1, , N .  

We denote 

a--A = a A  1 " " ' a A 2 v  ' a ( ~  1 " " ' a  " 

= >2 IM.[. 
i , j ~ l  

2/ 

We shall define, for ~ C N, ]~] = ~. ]~] and, for M =  N •  matr ix ,  IMI---- 
i=1 

I~et 

~ho 
(1.4) too(A) = ~ (A) ,  

(1.5) Eo> sup ]too(A)l, 

[ 1O,o ~1o (A, z) + ~o 1 (A, z) (1.~) ~o > s u p  ~-~ 

(1.7) r/o > sup \c~A ' 
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where ~r is the Jacobian mat r ix  of too (see (1.4)) and (A, z)EW(Oo, ~o; V). 
We say tha t  the unper turbed  system with Hamil tonian  ho is strictly an- 

isoehronous if ~]o < - ~  c~. 
For  simplicity, we take  ~o < r, ~o < 1. 
Our result is 

Theorem. For  f i x e d N ,  there  exist B > I ,  ~ > 0 ,  f l > 0 ,  7 > 0 ,  ~ > 0  such 
tha t ,  for all Co > E~ ~ verifying 

(1.8) BeG Co(Eo Co)=(~o e 7 ' E o ) ~ ;  ' < 1 ,  

l ! I 
it  is possible to construct  N functions A~, A.,, ..., A~ and a subset F c  V •  T s 

such tha t  

- -  volume V • {1.9) i) Volume /~> 1 - - ~ ]  ~ j ]  

t t 
ii) The AI,  ..., A N are prime integrals for the per tu rbed  motions 

s tar t ing in r .  

iii) The A's  are (~ independent  ~ on F, i.e. thei r  Jacobian  de terminant  
with respect to  the A variables is not  zero (actually equal  to  1); fur thermore,  
they  are in involut ion on /~. 

iv) Any other  funct ion A ~  C = ( V x T  N) which is a prime integral on /~ 
l 

is, on F, a function of A1, ..., A~. 

Our proof is based on the version of the  Kolmogorov-Arnold-Moser the- 
orem (1) given in (~), a l though it is in principle self-contained and the  KAM 
theorem is a corollary of the  following proof. 

After  completing this work, we received a prepr int  (3) in which essentially 
the  same results are proved in the differentiable case: t hey  do not imply im- 
mediately our results in the analyt ic  case and it seemed to us worth  publishing 
our  proof which might  help the readers to compare the  analyt ic  case with the 
differentiable case. 

The proof of the theorem's  last s ta tement  is only sketched. 

(1) V. ARNOLD: RUSS. Math. Surv., 18, 85 (1963); J. MOSER: Stable and random motions 
in dynamical systems, in Hermann Weyl Lectures (Princeton, iN. J., and Tokyo, 1973). 
(~) G. GALLAVOTTI: Meceanica elementare (Torino, 1980). 
(a) J. PSSCHEL: ~ber di]]erenzierbare tZaserungen invariantcr Tori, preprint ETH, 
Ziirich (1981),. 



2 8 0  L.  C H I ~ R C H I A  ~ n d  G. G A L L A V O T T I  

2 .  - P r o o f .  

~V 

Denote z ~ - - y I z ~  , for z e c  N, v = ( v ~ , . . . , v s ) E g  s and let 
t ~ l  

Moreover, let exp [z] ---- (exp [z,], ..., exp [zs]). 
We consider the expansion 

iml  

(2.1) l o ( A , z ) =  ~ /o~(A)z" 
9~g N 

and, by  the assumed analit icity and Laurent 's  theorem, we infer from (1.6) 

(2.2) Ivl/o~(A)l <~oeo exp [-- $oIV[J, a]o~ (A) <~o exp [ -  $olVl] �9 

Proceeding as in the small-denominator theorem's proof (2), p. 444, we fix a, 
sequence of (~ analyt ici ty loss ~> parameters,  quite arbitrarily, ($~ = $o/16(1 + ~)~, 

j = 0, 1, ...: 4 i ~i~< $0. 

We t ry  now to remove the perturbation by a canonical t ransformat ion 
defined by a generating function ~b o. Following perturbation theory (*), 13. 426, 
we take 

~ v  

(2.3) r z) = 2: /o~(A') 
o<l~l<~o - -  i teo(A ' )"v  ' 

which makes sense only if the denominator does not  vanish: this is imposed 
by thinking 

(A', z) e W((o, $o; v'~~ ~) = U C(~o, $o; a ) ,  

where ~o is chosen small enough, i.e. for a suitably chosen Bj :> 1, as 

(2.4) go : �89 Qo(B, CoEoNo~+~) -~ , No ---- 25o ~ log (Co so ~ ) -~  

and, if S ( A ,  ~ ) =  open sphere ia  R ~ with centre A and radius ~, V (~ is con- Oa 

veniently defined, for reasons which will appear clear, as union of spheres: 

and the set ~o) is taken to be a (( nonresonant ~> set 6' 0 

(2.61 F '~ = {~IA e V(eo, - go), I~o(A).~l- '< ColvW, o < Ivl<No} 
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and the  set V(~o, -- 50) is const ructed via the  following strange-looking operat ion:  
consider all the  points A e V such tha t  S(A, ~o) c V and take  the  union of t h e  
spheres S(A, ~o--5o): clearly, if V is a sphere (as supposed) and 5o < ~o < 
< radius of V, one simply obtains all the  points at  a distance larger t han  ~ 
from ~V. However,  this construction makes sense for any open set V and we 
shall use it m a ny  times to build new sets out of other  sets. 

The above choice of 50 stems from the requirement  tha t ,  VA' e ~ W ( 5 o  , 
~o; V~~ ( ~  being the <~projection over the action variables ~> :~(A, z ) =  A,  --(7 a ! 

z~(A, z) = z) the  denominator  in (2.3) is <~ nonresonant  ~) (see also (~), p. 446) : 

(2.7) ltoo(A')'v[-~ < 2col~l~,  vo < ivl < N o ,  

imposed via the  obvious est imates based on (2.2), while the  definition of 2Vo 
has been made so tha t  the  (~ ultraviolet  p a r t ,  of the  per turbat ion,  defined as 

(2.8) ~E>~o~A z) = ~ /o~(A) z ~ 

be such tha t ,  V(A, z) ~ W(~o, ~o-  ~o; V), 

(2.9) 

for some B~ > 1, obta ined in the  obvious way via (2.2), (2.1). 
B y  (2.2i, (2.3) it  easily follows a bound for r o on the  set W(5o , ~ o -  ~o; V(o~ )) 

on which r turns  out  to be holomorphic:  

(2.10) (er +1 ~r sup ~ ~o - ~  < B3e~ C~176 C~ O~ 

where Ba > 1, xl > 1 are suitable constants:  in the derivation of (2.10), (2.7) 
plays a crucial role too. 

Thus we can t r y  to pu t  

(2.11) 

Aj = A~ q- (A' z) , qJ. 

[ oo ] 
z~ = zr exp i b ~  (A', z) 

j = l ,  ..., N, 

and use this map of W(50 , ~ 0 -  ~0; V(v ~ into C ~ to generate a canonical trans- 

format ion (d ~~ and its inverse. 
We have to invert  the  second of (2.11) with respect to z '  or the first with 

respect to A. 
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Essentially one has to use some implicit functions'  theorem. The applicabihty 
condition is, of course, tha t  ~o/~A~ has very small ~-derivative (to invert 
the second) or tha t  8q~o/~r has very small A'-derivative (to invert the first). 

Actually we wish to invert the second of (2.11) in the nice form 

(2.12) r 

zj = % exp [iA~(A', z')] 

with A analytic enough: to do this we must  naturally give up some analyt ic i ty  
in z'  t rying to define A only in a smaller set, say W(~o, G -  2~o; V~]), com- 
pared to the analyt ici ty region W(~o, G--~o; V~ )) for ~o/~A'. 

Similarly we wish to invert the first of eqs. (2.11) in the nice form 

{2.13) A'---- A + Z'(A, z) 

with .--.' analyt ic:  again one must  renounce to some analytici ty in A t rying to 
define ~ '  in a smaller region, e.g. W(~o/2, t o -  ~o; V~I) �9 

For  instance, if A and -~-' are required to exist and to be holomorphie in 
the above-mentioned regions, the sufficient condition for this to happen can 
be derive4 by some standard implicit-function theorems (see, for instance, (2), 
p. 437, proposition XX) ;  they  have the form (see also (2.10)) 

(2.14) 

to define A or 

(2.15) 

to define ~ ' ,  where B4 > 4, x~>l are constants depending on the  particular 
implicit-function theorem used. I t  should be noted tha t  the above conditions 
have a (( dimensional interpretation ,) and they  can immediately be guessed (*). 

Under assumptions (2.14), (2.15) the functions A, ~ '  in (2.12), (2.13) also 
verify the bounds (see (2.10), (2.11)), 

(2.16) 
{ [A[KB~eo GEo G 8~-" < 6o, 

la'] <B~o GEo G ~;" eo < 6/8 

in their  analyt ici ty domains W(~0, to--  . (o) 2(~o, Va.) and W(~o/2, $o-- ~o; vco)~ r  o ! ,  

respectively. 

(*) A dimensional estimate, as the physics nomenclature wishes, is basically a bound 
on the derivative of a holomorphic function by its maximum divided by the distance 
to the definition domain boundary. 
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This allows us to define, for (A', z') e W(~o, 2o-- 260; v(~ --CTO / ,  

a~o (A', z' exp [iA(A', z')]) (2.17) .--.(A', z') ---- ~ 

and, for (A, z) e W(~o/2, 2o-- 6o; v(oh 
- -C o / ,  

aq~ (.4 § ,~'(A, ~), ~) (2.1s) A ' (A ,  ~) = ~ . 

In this way, we can consider the map W(o) 

J A  = A ' +  .'-.'(A', z'),  
,(2.19) / z = z' exp [iA(A', z')], 

and ~,o) 

283 

V(O)~ (A', z') ~ W(~o, 2o --  260; -~0,, 

(2.22) r176 (~ ,  2o--36o; V~~ W ( ~ ,  2o--26o; V~~ 

(t ) , v'o,~ ~ w [a_o 2 0 -  260, v':, (2.23) ~(o) W $o- -  36o; Vo ] ~ ~ 2 '  ' 

and, by construction, 

(2.24) c~(o)~(o, = ~(o)cd(o, = identity on W (Co~_, 2o--36o; V(~ 

It  is also easy to see that A, A', ~, .-z, are real for (A, z) or (A', z') iltR~ x T ~. 
It  follows from the general theory of the canonical transformations that 

tr (~ and c~(ol are completely canonical maps of V(~ T N onto their images (and, 
therefore, their Jacobian determinant in the (A, q~) variables must be 1). 

Using the first of (2.4), one sees that (2.14), (2.15) can be imposed by re- 

which imply 

{A'--- A + ~'(A, z) , ( ~  
(2.20) (A, z) E W 20-- 60; V c~ 

z' : z exp [iA'(A, z)], , Co], 

and ~, ~', A, A' verify in their domains of definition and holomorphy the 
bounds 

J I.~.l, t~'l<B3eoCoEoCobo~'eo< ~o/8, 
(2.21) 

i IA[, iA'l<a~eoeoEoCo6o"< 60, 
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quiring the stronger but  simpler condition 

(2.25) B5 eo Co(Eo Co) ~ N~ +~ ~;" < 1 

with B5 > 1, x3 > 1 suitably chosen. 
Hellcc, if (2.25) holds, we c~a ~ise (2.19) to describe the Hamil tonian mo- 

tions taking place in the image of V (~ x T ~ in the new variables (A', z'). 
In  the new variables the t Iamil tonian is 

(2.26) HdA ' ,  z'} = ho(A'+ Z(A', z'}) + ]o(a'+ .-'.(A', z'), z '  exp [iA(A', z')]) . l  

Then, as in formal perturbation theory and as in the small-denominator 
theorem's proof ((2), p. 430, 448, [5.10.28], [5.12.37]), we write 

HdA' ,  z') = hdA') +/ I (A ' ,  z ' ) ,  

where Ix----H1- hi and hx is defined as 

hdA') = ho(A') +/oo(A') .  

A long but  straightforward calculation based on the Cauchy formula for  
the holomorphic functions and on the basic estimates (2.2), (2.9), (2.10), (2.21) 
allows us after  some labour to show that ,  if we define 

(2.27) 

o n e  h a s  

(2.28) 

~o ~h~ 
el = ~ ,  ~ = ~ o -  400, r = ~X (A),  

in W(~o, ~o; (o) Go) , 

in W . . ,  ; Voo , 

provided (2.25) holds together with B6,/oeo0o-~< 1: these two conditions can 

and, for a suitable Be > 1, x4 > 1, one can take 

I ~hl I snp/ /<Eo+  o--E1 

(2.29) sup [~X~-A] <~/o(1 + B.~/oeoeo t) ~ ~1 

-- CoeoNo (EoCo) ~o sup ~ + e ~  ~ <Bo ~ ~+~ ~ - ~ '  

~(~ ~:x; V (~ r W(Qo, G; V) (7 o ,' 
~(o)(V(O) • T ~) c V • T ~v 

Co 

E 1 

V r  
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be  impl ied  b y  the  s impler  one 

(2.30) ao = B~ ~o r Co)*N~ ++* bo='(~o Eo ~o t) < 1 ,  

i f  one not ices  t h a t  t h e  h o l o m o r p h y  of h forces  U o E o @ ~ > l .  
The  (~ h a r d e r  ,) e s t i m a t e  is t h e  las t  of eqs. (2.29) a n d  its de r iva t ion  can  be 

f o u n d  also in (2) (p. 451-453), b u t  it  is s impler  to  der ive  i t  b y  oneself :  i t  is 
a g a i n  a (~ d imens iona l  inequa l i ty  ~). 

W e  define n o w  

(2.31) 

C~= 2~- Co, 

- Q~ (B~C~E1N~+I)-I ,  o ~ =  7f 

A~Vrco \ 

= V (0)* V"o, {AIAE Co (~15 - -  r  ]~L)l(~4) '~  ] I~-~Cl[ '~IN , 0 <  I M ] < N I }  

N~ = 2(5; ~ log (C~e~8~) -~ , 

a, = B7 e~ CI(E1C1)21V~ +1 (}-~'(~1E1 ~-~1) , 

a n d  VCc~ - -  5~) is t he  set  c o n s t r u c t e d  as descr ibed  a f t e r  (2.6), which  now is 
no longer  as t r iv ia l  as there .  ~ o t i c e  t h a t  V ") c V (~ CI ~o " 

T h e  a r g u m e n t  can  n o w  be  i t e r a t e d  wi th  W ( ~ ,  2~; V~I )) r ep lac ing  W(0o, 

20; V ~~ Co �9 
Call 

(2.32) ~ = (B~ + B~)~ C~ s~(E~ Q)~ N ~ + ' ( V ~  E~ q~)  b~ 2(~'+~') , 

no t ice  that,  Ok > ak; then ,  a s s u m i n g  induc t ive ly  

(2.33) 

k--1 

2 ~ = 2 o - 4 ~ t ~ ,  C ~ = C o 0 + k ) ~ ,  
1--0 

El: < 2Eo ,  ~- < 2~/o , 51~ < 1 , 

(Co~o)"-~ <~ C,..~,~<(Coeo)C~)~ , 

e~ >~ eo[(log (Co So) ~)-~'k'2ok](~'+')(Eo Co)-", 

one easi ly  finds t ha t ,  if 5o is s m a n  enough,  

(2.34) 

eqs. (2.33) hold,  Y k > 0 .  

B85o< 17 
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We can then define the canonical transformations cg~.), ~ . )  and (see (2.31), 
(2.16)) 

(2.35) 

CaU 

(2.36) 

V~.+, ) -+ W(q.,, #.; Vo.). 

in) W .  = ~o) ... ~ ( . -~) (W(q . ,  ~.; V~. )) c Wn_~, 

F .  = ~(o) ... (r V~] • T~)  c F._~ . 

I t  can be easily checked tha t  the first inclusion follows trivially from de- 
finitions (2.31) and from (2.16); the second inclusion follows from the inter- 
mediate inequality in (2.16) and from the fact tha t  C.e~E,~C. (~(~ .+~[2)  -~,,._,~ 0 : 
hence, possibly increasing the value of the constant Ba in (2.34), we can an4 
shall assume that [~(~)I < ~+~/2, if Z(,) is the analogue of Z for (d (~), Vn>O, 
strengthening the r.h.s, in (2.16). 

I t  is also easy to see tha t  

) /7 (k+~)~ c W ~ - - 3 ~ k ,  V(v~ ) �9 (2.37) ~(k) W(Qk+~, ~k+~ ; -c~+~ ~ , 

I t  can be easily checked tha t  the limits 

n - - >  vo 

eo 

exist V(A, z) ~ W~ = [-] W. .  
n=o 

In  fact, the map ~(k) differs from the ident i ty map, together with its deriv- 
atives of order M with respect to A and Q with respect to z,  by a quant i ty  
tha t  on W(~k/4, ~k-- 3Ok, V~ )) cart be est imated by (see (2.20), (2.21)) 

(2.38) 

M! Q ! 2u+Q 

with natural  notat ion and for some B9 > 1: notice tha t  eqs. (2.38) are again 
dimensional estimates. 

The convergence of (A'~, z'~) on Woo is clearly guaranteed by (2.38) and (2.33) 
(implying tha t  the r.h.s, of (2.38) converges to zero as k -+ cr faster than  any  
exponential). Actually (2.38) gives much more: it shows tha t  the functions 

(2.39) 
A '  (A,  z )  = :h ~ ("-1) ... ~f(~ z)  , 

z '  (A,  z )  = ~ ~(.-1) ... ~(o)(A, z)  
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have,  on W. ,  derivatives bounded as 

(2.40) 

~[aI+lbl 
A'.(A, z) <B(a, b),  V(A, z) e W.,  

~[a[+lbl i 
z',,(A, z )  B ' ( a ,  b)  , V(A,  z )  z W,~, 

with B, B'  depending <~ on everything ~) but  not  on n. Fur thermore ,  the de- 
rivatives appearing in (2.40) converge, on W~, to some limits, which we decide 
to call 

~]a[+}b[ ~la[TIb] 
bAL - -  ' (2.41) c3A"c3z or ~Aa~zb Z~ 

with the  natm'al meaning of the  symbols, and the convergence, as n - ~  0% is 
faster  t han  any  exponential  in n. 

Our next  task is to show tha t  (2.41) are functions with the (( correct prop- 
erties ~> tha t  one would expect  from their  symbolic notations.  

To do this, we must  be sure tha t  the sets W~ are not  too small if F~ = 
co 

= N r ~ # o .  

Let  (A, z) c Fco and let 

I~I co (2.42) /~ --~ (1 § (8NB~)ej C~Er Cj 5~ -~ ($[~(o~/~j)) ~= I ]  (1 § 0~), 
j=0 j=0 

then,  for each n>~0, there  is (A., z.) ~ Vr T x such tha t  5' n 

(2.43) (A, z) = ~#(o) ... (~(,~-I)(A., z . ) .  

We wish to show that ,  if ](A, z ) -  (A', z')[ =~ [A--A ']  § ~olz'--z i and if" 
I(A, z) -- (A', z')] < #oQ./4/~, then  the point  (A', z') is in W.:  in other words, 
W. contains the complex sphere with radius to 0./4# around (A, z) c F = .  

In  fact,  eqs. (2.38) immediately imply for (A~, z~), (A2, z2) in W(~,I4,. 
~ - -  3~,; v<~h (A~, z~) ill V( ' ) •  w and I(& zl)--  (A~, z~)t < ~14 tha t  --6'~/, Cp ' 

(2,44) I(~(l~ Z l ) -  ~<~)(A2, ~2)[< ( ] § 0~)[(A1, ~ ;1 ) -  (A2, ~2) 1 

with 0~ defined in (2.42). 

Hence, by  induction, it follows tha t  

(2.45) [(A., z . ) -  ~<"-" ... ~<+(A', z')l--= 

= I~c.-1)... ZY<+(A, z ) -  ~<"-" ... ~<o)(A', z ' ) l< 

< IV[ (1 + Oj)l(a, ~ ) -  (A', z')l<~#o ~./4~ ---- ~.#oI4 ; 
j=0 
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At , ~ (n- -1)  ~(~ z'), we see tha t  taking ( . ,  z )  . . . .  

(2.46) 
[A:--A,,I < e., 

l(~,:)~l = I ( ~ ' ) ~ -  (~,,), + (~,,,),l = 11 4- 
I 

(z~,)~- (z.b[ 
(z.b 

co 

since I(z.)~l = 1, as zn ~ T ~, hence, if ~ = ~o -- 4 ~ (~, 
j=O 

{2.47) exp [--$~] < 1 -- ~:o/4<1 -- ~o ~.I4~o< I(~:);I < 

<1  4- ~oeJ4eo< l  4- ~o/4 < e x p  [ ~ ] ,  

because the choice of 5~ has been such tha t  ~ > ~o/2. 
W ( ~ ,  ~,; V~" )) and (A', z') is consequently in W~. 

Let  (A, z), (.~, "~) ~ I '~,  "~ : exp [i~], suppose tha t  

A f  ! 
Therefore, ( ~, z )  

(2.48) ~=o ~n§ I(.A, z) - (A~, ~)1 < ~o~:14ff. 

Then the whole set of points parametrized by t ~ [0, 1]: A(t) = At 4- (1-- t).Tl, 
r : r 4- ( 1 -  t)r is in W, if we suppose, as we obviously may  without  
loss of generality, tha t  the shortest pa th  in T ~ connecting ~ with ~ is the 
above segment. 

A '  We can, therefore, apply the Lagrange-Taylor formula to estimate I (n)( A, 
z ) -  A('.)(.~,~)[ or, more generally, to estimate the difference between two 
arbitraI*y derivatives of order ao in the action variables and bo in the angles: 
given M > 0, 

(2.49) 
I ~laol+lbo[ A~ c~laor+lb.r A~n) -- -- 

~lao+al+lbo+bJA~n ) (A  - -  .~)a (• __ "~)b I 

o,b~z+~ a ! b ! 
O~lal-t-lb[~M 

< (  max B(ao 4- a, bo 4- b))D(ao, bo, M)I(A, z) - - (A ,  ~)[~+x 
\]al+lbl=M+l 

where D is a suitable combinatorial factor: notice tha t  the r.h.s, does not  ex- 

plicitly depend on n. 
On the other hand,  the limits (2.41) are reached at  very high speed by 

(2.38) and in (2.49) we can replace the index n by cr with an error tha t  can be 

explicitly controlled by (2.38). 
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I f  

(2.50) 
co /8N/~Oo~I.ol+Ib. i  

5,(laol Ibol) Bolaol!lbol! ~ C, . ,  <' 
k = l t  \ co~1< / 

we can remark tha t  ~ ~_+> 0 faster tha t  any exponential  in (~)" or, see (2.33), 
faster than  any power in fin. Hence from (2.49), (2.50) we get, sui tably 
choosing /) ,  

(2.51) 
c~la~176 cqia~176 (A - -  A)" (Z - -  ~)b 
- ~A.o~zb. (A, z) - -  ~ ~A.o+.~zbo+b (~, ~) < .,bzz~+ a ! b ! 

o<<.la[+lbl~I 

< / 5 ( l a o l ,  Ibol, M ) I ( A  , z) - -  (~., ~)]-'-'+~ -t- C(I(A, z) - -  (~,  ~)l ,  laol, Ibol, M )  

and ~(x;p, q, s,) tends to zero, as x -+ O, faster  than  any power in x, Vp, q, s in- 
tegers and ~ can be chosen as 

(2.52) ~(x; p ,  q, ~.) = x ~ $"(P + I~1, q + Ibl) [ ~ o e ~ y  ='+'b' 
O~lal+lbl~s 

if e~+, ~o/aff < x < ~ ~o/# , .  
Ident ical  arguments and conclusions hold for the angle variables z'~(A, z) ,  

(A, z) ~ Y~. 

Hence (A'~, z'co) are 2N functions on F~ extendible to its closure, by  con- 
t inuity,  / ~  and their  extensions are in Cco(/wco) in the sense of W h i t n e y ( %  
i.e. essentially in the sense of (2.51). 

I t  appe,q~rs from the above analysis th:rt the Jacobian nlatr ix 

( ~(A s , z ' ) ]  

is a mat r ix  close to the ident i ty  if (2.34) holds. 

The variables A'co, z'~ verify the canonical commuta t ion  rules on Fro since 
A,,, r do, being canonical variables by  construction: in particular,  the 

A'co's are in involution on F ~ .  I t  also follows from the canonicity of the maps 
~,o,, ..., V'"', ... t ha t  det (~(a'co, U~)/~(A, z)) --  1 on Pco. 

Another  consequence of the above arguments and estimates is the existence 
of the limit 

co 

(2.53) lira con(A) = coco(A), VA e V <co) = N V<") 
n---> co C n  ~ 

7 t = 0  

(4) H. WHITNEY: Trans. Am.. Math. Soc., 36, 63 (1934). 

19 - I1 Nuovo  Cimento B.  
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In  fact, a repetition of the argument  leading to (2.51) allows us to show, 
17~n)~ Yn>m, V(A, z) e W(g,,, ~,,; -c , , -  

(2.54) ~1,,~ to~ (.,4) ~lal tOm B(a) ~, 

with B(a) > 1 suitably chosen. From this one immediately deduces, proceeding 
as before, tha t  to~ ~ C~(V ~ )  in the sense of Whi tney and, more explicitly, if 

, v ( ~  ~ ~ R N, e~ /2<lA- -A l<e~_ , ]2  71e-c,~,  

(2.55) 

(2.56) 

k~O k = n  

k=O 

[to,~(A) - -  too(A) - -  to~(-4) + too(A)] <B~o4 ~ e~q~*{A - -  .,4]. 

This means that ,  if eo is small enough and if r is small enough, the function 
to~ is one to one on V (~),~ n (any sphere with radius #}; since }Mo(A) v l > ~ l v l ,  

(2.57) 

- I~o(A) -- ~o(a') + ~.(A) -- ~o(A) -- ~.(A') + ~o(A')i > 

= tMo(A')(A --  A') + too(A) --  too(A') - -  Mo(A')(A --  A') 1 --  

- - 4  ~ eke~*{A- A' l> 
k=0 

.~ T]~.I (1 __ ~10 Eo T]o ~)ol # r _ )  ]- - - A '  

if eo is small enough and if # ~- ~ ~o(Blo ~ Eo ~;,)-1, the condition on so can and 
shall be met  by possibly increasing the constant B8 in (2.34). 

We can use the above remarks to estimate the measure of F ~ .  
In  fact, observe that ,  if a set G c R ~ is a union of open spheres of equal 

radius and each sphere contains some subset filling it up to a fraction 1 -  
of its volume, then  the union of such subsets fills (7 up to a fraction 1--B**~/~, 
say, of its volume~ B1, being a G-independent constant. 

Hence, if ~ is a union of open spheres with radius ~ and we consider the 
set ~ ( 0 , -  5) obtained by taking out of each of the covering spheres the outer 
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shell of width (, it follows th,~t 

(2.58) voi ?(0, - 5)> (1 - B , . ~ )  vol )7. 

We c~n now consider V(")9 V(") (see (2.31)). We estimate its volume by  Cn Cn 

v(~ 1) which is a union of spheres of tha t  of V(")'o.. this is n set obtained from -o~_~ , 
radius ~ = ~,_1/8 by  first taking out of each of the spheres an outer  shell of 
width ~n ~nd, secondly, depriving the remaining set of the  (( resonunt points )). 

In  the first step we obtain the set V("-~)~ ~ -- ~,,) whose volume may  be Cn_~ x ~ n ,  

bounded by  using (2.58) by  

(2.59) vol "~(~ ~)'- ( ~i~--I vc,~ , t C ~ , - - ~ ) >  1 - - B l o  ~ volV(~-l) r n - - 1  " ~ /  

V(n-1)( To estimate the measure of the set of the resonant  points in 0~_, , ~ , , -  ~ ) ,  
i.e. the  measure of the set V' of points in V(~-'c ^ ,, 0~_~ ,~n, -- ~ )  c V, such tha t  the 
inequality 

is not  t rue for some v, 0 < ] , ]<Nn ,  we notice tha t  

(2.60) volV:~fdA'<Tf d e t ~  d to ,  

v~ r 

where T is an est imate on the m~ximum number  of points A'+ V ~ where the --On ) 

function to. t.~kes the s.~me value: by  (2.57) we can t~ke 

for some B l a >  1. 
Hence 

(2.62) vol V" <Bl~(EovoeJ ~o)NCfd~o< 
(o,,(v~) 

f 
[,o.~I <o:,'I~I -~ 

r ~r 

( r ) N  (Eo~lo~ot) N 
<~I'(V~176176 ~ EoC. 

f dr < 
[,oovI<o; 1l~1 -~ 

I~ I<E , ,  

- -  vol V < B 1 4  (*]~176176 VO1 V.  
E0 C .  

19" - I1 N u o v o  C imen to  B .  
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Therefore; 

2 ~  . V<~_I~ (~oEoq~l) 2N 
vol v(,o > vol i7(~, -~ [1 - -  B~2 "~/0-/0,*) vol - -  B~, 

r r  ~ k --e~ e._~ -Eo Cn 
vol V .  

Hence inductively 

(2.63) vol v(~)~ 

EoCo (1 + k) ~ v o l V >  
k = O  

( oEo o W\ . 
>~ 1--B~5 ~ Iv~ 

%//~'o Uo / 

where the last factor  in the  first intermediate  te rm arises from the fact  t ha t  
v <"). the second inequali ty is an easy V (~ has to  be t rea ted  differently from -o~, 

6' o 

consequence of the relation among ~o, Eo Co, ~o, r (see (2.33) and recall t ha t  

r > Qo). 
Since /~  ~(o) (d(~-~I~V(')• ~) is a canonical image of V(~• it  has 

r  x 6* n c n 

the  same Liouville measure: 

[ (VoEo Qol)~N~ 
(2.04) v o l t =  ) ~ 1  - B,5- ~ - E T o  ] vol (V•  Ts) .  

t t 
The continuabil i ty of A~,  z= to functions in C~(V • T ~) defined on the 

whole phase space is an immediate  consequence of Whi tney ' s  theorem (4) and 
of the uniformity of (2.51) with respect to (A, z) (allowing the extension by  
cont inui ty  of A'~, z 2 and of their  derivatives to the closure / ~  of F~).  

I t  remains to prove tha t  the A "  are prime integrals in r ~ .  
We notice tha t  the above analysis and estimates immediately imply tha t  

co 

the  map (A, z) --> (A'~, z'~) is one to one as a map between F~ and ~ V (") • T s 6' n 

(recall t ha t  for each canonical map ~(~) we constructed also its inverse ~(k)): 

hence it  is possible to define a system of C ~ co-ordinates in a neighbourhood 

of _F  for a neighbourhood of V(~)• T ~ and vice versa by using the above-men- 

t ioned C ~ extension of the  map (A, z) -+ (A'~o, z'~). This is so because the Ja-  
cobian determinant  of the map (A, z) --> (A 2 , z'oo) is 1 in the (A, q~), (Ao~, q~ )  
variables, as already noticed. 

We also noticed tha t  from the above analysis it immediately follows tha t  

(2.65) to . (A'(A,  z)) ~ r (A~(A,  z) ) ,  V(A, z) ~ F~.,  

faster  t ha n  any power of 0,/0o. 
I t  is now easy to complete the proof. 
:First show tha t  A'~ are prime integrals: this follows from the fact  t ha t  the 

evolution (~ commutes )> with the canonical transformations.  
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Let  ( A , z ) ~ F ~  and fix t > 0 .  Then 

(2.66) ~(~-*) ... ~(~176 , z)) ._,,q(') . . . .  ~("-*) ~(~ z) ------ _, ,._,, , 

where ,qc~) is the Hamiltonian flow with Hamiltonian Hn: hence from the form "- t  

of the Hamilton's  equations it follows tha t  

(2.67) [Sc,')(An, z,) -- (An, z .  exp [ir < e0(exp [e~*s, t] -- 1) + s, t ,  

at least as long as the motion stays in W ( ~ ,  ~.; V~)), i.e. as long as the r.h.s. 
of (2.67) is ~q~: this is certainly true for n large since s~-->0 much faster 
than  Q~. Hence (2.65)-(2.67) imply, by taking the limit as n - +  oo in (2.67), 
u z) ~ F . ,  

t (0) t (0) t r 
(2.68) (A~o(S t (A, z)), (A~(A, z), zo~ exp [ito~(Ao~)t]), 

which clearly means tha t  A'~ are prime integrals on F ~ .  
The last s ta tement  of the theorem follows from the remark that ,  by con- 

struction, 

(2.69) if o < I I<N.. 

Thus, if ~ Ie  C~(V• ~) is a prime integral on F ~ ,  it  can be expressed in 
a small neighbourhood of T'.  as 

(2.7o) d ( a ,  = 

because A ' ,  z'~ arc a co-ordinate system in a neighbourhood of Vr215 T ~ 
representing the points of a neighbonrhood of Fo~. 

Then, by (2.68) and since ~ is a prime integral on Fo~, 

_~ (o) ----d(a'co(a,z),z~(A,z)exp[,to~(a~(A,z))t]) (2.71) ~(A, z) -~(S, (a, z)) ' " ' , 

but  the N pulsations r are rationally independent by  (2.69): hence 
(2.71) and the arbitrariness of t > 0 imply tha t  5 must  be z~-independent on 
F~, i.e. ~(A, z ) =  b(A~(A, z)) for some b ~ C~~ 

3. - A simple application to the harmonic oscillators. 

Consider N harmonic nonresonant oscillators which in action angle variables 
are described by the Hamil tonian 

(3.1) ~(A) = r A ,  (A, $)  ~ R ~ • T ~ 
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(3.7) 

and  

with 

(3.2) Itoo',[ -1 < Clv[ ~, C > O, ~ > O. 

Le t  -](A, tg) be analyt ic  in W(1, 1, $1) and assume tha t  its average over 
T N, ]o(A) is such tha t  

( )1 
(3.3) 

in the  whole analy t ic i ty  domain.  

Consider the  Hami l ton ian  

(3.4) h(A) -~ el(A, ~) . 

We can apply  to it a Birkhoff t ransformat ion  to write it in new variables  

(A', q~') as 

(3.5) ho(A') ~- e~/o(A, ~,  e) , 

where 

(3.6) ho(A') : too'A + e]o(A) + e2](A, e) , 

all functions being analyt ic  as (A, z) E W(�89 �89 ~ )  with f l <  1 as close to 1 
as wished (see (~), p. 442, proposit ion X X I )  and as e varies near  0. Fur thermore ,  

~h 0 ~--N~ [ e2ho ~-1 

2 ~A' ' 2 \~A '  ~A' ] 

~e~]o(A', r *) ~*~to(A',cp', e) ) 
(3.8) to> sup ~A'  + 2 ~ ,  <G~e~ 

if e is small enough. 

Thus,  by  taking p > N and e small enough, we can apply  our theorem 

to prove  t ha t  $1 x T ~ is covered, up to a set of measure  as small as we wish 

for e - +  0, b y  invar iant  tori  and  locally such tori  can be thought  as level 

surface of some C~-functions on $1 x T z~. 

The idea for the  above appl icat ion is t aken  f rom (~): it was suggested to 

us by  GALGA~rI. 

We  owe to J .  M o s ~  the informat ion about  the  work of J .  POSCHEL. We  

are indebted  to L. GALGANI for m a n y  discussions and  suggestions. 
We  are indebted to B. SOUILLARD for some ideas for the proof in the  ap- 

pendix.  

(5) T. NISHIDA: Mem. Pac. Eng. Kyoto Univ., 33, 27 (1971). 
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APPENDIX 

Volume estimate. 

Notice first that ,  if V is a union of uni t  spheres and if each of t hem is dilated 
by  a factor  1 + ~, keeping its centre fixed we obta in  a new set V~ such t h a t  
vol V,7<(1 + ~])~ vol V. 

Let  V be a union of spheres, of unit  radius, all intersecting one of t h e m  
2(xo, 1). Suppose tha t  each of t h e m  is covered up to a fract ion 1 - -  ~ of its 
volume b y  some points which we call the  ( 1 -  ~) points. Call a points in V 
those which are out  of the  complement  of the union of the  ( 1 -  a) points. 

Le t  ~ > 0 and consider a max ima l  set in the set of the centres of the spheres 
consisting of points at  m u t ua l  distance not  smaller than  ~ .  Call G this set and 
let V~ be the  union of the  uni t  spheres centred ~t the  points  of G. Clearly Vo,~,~ 
covers V and vol Va,~o< (1 + ~)N vol Vo. 

We can es t imate  the volume of the (1 - - ~ )  points in V as the fract ion 

(vol V q -  2B(~-o)N~ vol Va)/vol V,~,~,~> (1 --2Bg:t-N~)/(1 ~- go)N 

where n----B(a-~) N vol V is an es t imate  of the nu mber  of elements of G and use 
has been made  of the fact  t ha t  the  volume of each sphere is less than  vol V. 

Le t  now V be an a rb i t ra ry  union of spheres and let xl,  ..., x ,  be a m~ximal  
set of the set of the  eentres consisting of points  such tha t  Ix, - -  xjJ > 2 ,  i # ], 
and associate each of the other spheres to one (and only one) of the  spheres of 
the max imal  set which intersect  it. The set V will consist of the p disjoint 
spheres with the centre in the  selected max imal  set, plus the set W of the (1 - -  7) 
points outside this union plus the set of the  ~ points  outside this union: 

vol v<~o vol ~(o, :t) + vol w +  (1 - (1 -B~,~-~'h/(1 + ~)~)2~o vol (s(o, 1)), 

while the ( 1 - - a )  points in V have  a volume p ( 1 - - a )  vol S(O, 1 ) +  vol W, 
hence the fract ion of (1 - -  ~) points in V is bounded below b y  (1 - -  Bll max  (a, 
~I-N~, ~ ) ) .  Then choose ~ ~ 1/2N. 

�9 R I A S S U N T O  

Si considera un sistema hamiltoniano a N gradi di liberts perturbazione ana]itiea 
di un sistema analiticamente e eanonicamente integrabfle e strettamente non isoerono. 
Si mostra l'esistenza di N funzioni definite sullo spazio delle fasi e ivi di classe C ~ ehe 
sono integrali primi per il moto perturbato su opportune regioni la eui misura di Lebesgue 
tende a riempire localmente lo spazio delle fasi al tendere a zero della perturbazione. 
S'illustra un'apptieazione alle perturbazioni di oseitlatori isoeroni non risonanti. 

Pe3i.oMe He noay,~eHo. 


