Quantum Fields – Algebras, Processes

Edited by Ludwig Streit

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, re-printing, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. © 1980 by Springer-Verlag/Wien
Printed in Austria

With 10 Figures

In these notes I collect, together with the talk that I gave at the meeting (represented by §6,7) some other introductory topics like the theory of the Bernoulli fields [1,2] in a form which takes into account the results in [31, 41, 5].

It seems to me that the Bernoulli field theory already contains the problems typical of the euclidean field theory (i.e., the renormalization of the ultraviolet divergences) in a form essentially identical to the one in which they appear in the more interesting euclidean fields. However, such models are simpler as they do not present some additional difficulties which do not seem to me to have much to do with the ultraviolet stability. See concluding remarks for references and historical comments.

1. The Hierarchical Model

The role that the hierarchical model will play in these lectures is that of providing a guide to the understanding of the mechanism which allows the cancellation of the various divergent contributions to the ground state energy to actually occur, in a controllable way. The hierarchical model is a model of field theory in which the free field is replaced by some new free field of simpler structure but which leads to essentially the same ultraviolet problems.

Let Q_{k}^{w} be a sequence of pavements of R^{d} with cubic tesserae: the tesserae of Q_{k} have side size 2^{-k} and the pavements will be supposed compatible.

To each tessera Δ we associate a gaussian random variable z_{Δ} normalized so that $E(z_{\Delta}^{2}) = 1$, $\forall \Delta \in Q_{k}$ we shall also suppose that z and z_{Δ} are independent unless $\Delta, \Delta' \in Q_{k}$ for some $k = 0, 1, \ldots$.

The variables associated with the same pavement Q_{k} of R^{d} will be supposed distributed with the following formal density

$$P(\prod_{\Delta \in Q_{k}} dz_{\Delta}) = \exp\left(-\frac{1}{2} \sum_{\Delta, \Delta' \in Q_{k} \text{n.n.}} \left(\frac{d}{2} \Sigma_{\Delta} z_{\Delta}^{2} - \frac{d}{2} \Sigma_{\Delta} z_{\Delta}^{2}\right)\right)$$

i.e., $z_{\Delta}, \Delta \in Q_{k}$ is the gaussian process on the lattice of the tesserae with invariance operator

$$- \Delta^{2} + D^{2}$$

when D is the second difference.

We define the "free field":

$$\phi_{x}^{k} = \frac{1}{\Delta_{x, k}^{(d-2)k}} \sum_{\Delta \in Q_{k}} z_{\Delta}$$

and the cut-off field

$$\phi_{x}^{(kN)} = \sum_{k=0}^{N} \frac{1}{\sqrt{2(d-2)k}} \sum_{\Delta \in Q_{k}} z_{\Delta}$$

where $\Delta_{0}, \Delta_{1}, \ldots, \Delta_{N}$ are in Q_{0}, \ldots, Q_{N} and contain x. To resolve the ambiguities at the boundaries let us suppose, for instance, that the Δ_{i}'s are open. The field $\phi_{x}^{(kN)}$ is normalizable, in contrast to the field ϕ_{x}^{k}. Its normalized copy

$$\phi_{x}^{(kN)} = \frac{1}{\sqrt{2(d-2)k}} \sum_{\Delta \in Q_{k}} z_{\Delta}$$

verifies a recursion relation which stems from its definition:

$$\phi_{x}^{(kN)} = \sum_{\Delta \in Q_{k}} \frac{\phi_{x_{\Delta}}^{(k-1)}}{\Sigma_{\Delta' \in Q_{k} \text{n.n.}}} + \phi_{x}^{(kN)}$$

where $\Delta \in Q_{N}$, $\Delta' \in Q_{N-1}$ and $\phi_{x}^{(kN)}$ denotes the constant value of $\phi_{x}^{(kN)}$ on Δ, finally

$$\phi_{x}^{(kN)} = \sum_{k=0}^{N-1} \frac{\phi_{x}^{(kN)}}{\Sigma_{\Delta \in Q_{k} \text{n.n.}}} + \phi_{x}^{(kN)}$$

if $d = 2$

$$\phi_{x}^{(kN)} = \sum_{k=0}^{N-1} \frac{\phi_{x}^{(kN)}}{\Sigma_{\Delta \in Q_{k} \text{n.n.}}} + \phi_{x}^{(kN)}$$

if $d \geq 2$.
so if $d = 3$, $\Gamma_N \equiv 1$, if $d = 4$, $\Gamma_N \equiv \frac{3}{2}$ etc...

The "interaction" that we wish to consider is defined by

$$V_{0,I}^{(N)}(\phi) = -\lambda \int_I \phi_{\xi}^{[SN]} d\xi$$

where I is a cube paved by O_i.

The above quantity is the "nonrenormalized" interaction.

We define for an arbitrary gaussian random variable x the random variables x^2 by

$$x^2 = \sqrt{2}\mathcal{H}_n\left(\frac{x}{\sqrt{2}}\right), \quad c = \epsilon(x^2)$$

where H_n is the n-th Hermite polynomial (e.g., $H_2(y) = y^2 - 1/2$, $H_4(y) = y^4 - 3y^2 + 3/2$ etc.). The "renormalized" interaction to first order in λ is

$$V_{1,I}^{(N)}(\phi) = -\lambda \int_I \phi_{\xi}^{[SN]} d\xi$$

We shall later define the higher order renormalized interactions $V_{t,I}^{(N)}(\phi)$, $t \geq 2$. The ultraviolet problem to order t is to show the existence (or nonexistence) of a function $H_{t}(\lambda)$ such that

$$\exp -H_{t}(\lambda)(I) \leq \int \exp V_{t,I}^{(N)}(\phi) P(\phi) \leq \exp H_{t}(\lambda)(I)$$

$$\lim_{\lambda \to 0} \lambda^{-t} H_{t}(\lambda) = 0.$$

We shall consider only $d = 2$ or $d = 3$. The formulation of the ultraviolet stability in $d \geq 4$ would be different and, anyway, it is still an open problem.

The $d = 2$, $d = 3$ cases are special because the models are "superrenormalizable" in such dimensions. The mathematical aspect of superrenormalizability can be seen by writing $V_{1,I}^{(N)}$, say, as a sum using that $\phi_{\xi}^{[SN]}$ is piecewise constant: since

$$\phi_{\xi}^{[SN]} \approx 2^{2(d-2)}N(1 + \frac{\Gamma_N}{2})^2 H_4(\phi_{\xi}^{[SN]})$$

we find

$$V_{1,I}^{(N)} = -\lambda \sum_{\Delta \in Q_0} 2^{(d-4)N/2} \sum_{\Gamma_N} H_4(X_{\Gamma}^{(N)})$$

i.e., if we look at the interaction as a function of the normalized fields we see that if $d \leq 4$ the "effective coupling constant" is $\lambda^2 2^{(d-4)N}$: this will allow the use of perturbation theory for N larger: the fact that $\lambda^2 2^{(d-4)N} \to 0$ is also called "asymptotic freedom".

2. Analysis of the Ultraviolet Problem in the Bernoulli Model to Order 1 in $d = 2$, The Lower Bound

The Bernoulli field is defined by setting $a = 0$ (i.e., all the z's become independently distributed), see (1.1).

The theory of the ultraviolet problem for the Bernoulli field is quite easy but very instructive, already in the $d = 2$, $t = 1$ case. We first find a lower bound for

$$Z(I) = \int P_{\phi}(dz) \exp V_{1,I}^{(N)}(\phi)$$

by saying

$$Z(I) \geq \int P_{\phi}(dz) \sum_{I=0}^{N} \prod_{\Delta \in Q_1} x_{\Gamma}^{(N)}(X(1)) e_{1,I}^{(N)}$$

$$\lim_{\epsilon \to 0} \lambda^{-t} E_{t}(\lambda) = 0.$$

where $x_{\Gamma}^{(N)}$ are suitable characteristic functions; x_{Γ} is the c.f. of the event, if $\Delta \in Q_k$:

$$|X| \geq 3(1+k)^4 \log(1+\lambda^{-1})$$

where $B > 0$ will be chosen later and is supposed at least such that: $H_{d}(b) \geq \min(H_{d}) = 3/2, \forall b \geq B$. The $\log(1+\lambda^{-1})$ has been inserted to improve the estimates, automatically, at λ small, and is not the optimal choice.

To estimate the above integral we notice

$$Z(I) \geq \int P_{\phi}(dz) \prod_{I=0}^{N-1} \prod_{\Delta \in Q_{I+1}} x_{\Gamma}^{(N)}(X(1)) e_{1,I}^{(N)}.$$
\[x \in C_{N-1} \]
\[B_N = N^{1/2} B - V N^{1/2} \]

Hence the estimate can be obtained applying the following easy lemma.

Lemma: Let \(|x| \leq B^1\) and let \(x = x_1 + \sqrt{T} x_2\), \(B \geq B^1 \geq 1\), let \(B = B V^T - \sqrt{T} B^1 \geq 1\), then:

\[\exp - \lambda (1+T)^2 H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

\[= \exp - \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

\[= \exp - \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

and \(c\) can be estimated by

\[\left| c_{1,2} \right| \leq (\lambda \frac{1}{2} B^4 e^C (1+x)^B)\frac{1}{2} + C_2 e^{-C_3 B^2 + C_4 (1+x)^B} \]

\[\leq \eta \frac{1}{2} (\lambda B^2 B) \]

uniformly in \(|x| \leq B^1\).

Proof: It is an easy exercise.

The application is immediate; the integrals in (2.4) are bounded by

\[\int \frac{B^N (x)}{x^N} \left(1+T \right)^{-\frac{1}{2}} H_4(x) e^{-\frac{x^2}{\sqrt{V}}} \]

\[\geq \exp - \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

\[\geq \exp - \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

where

\[E_N = V^{1+T} B^N - V N^{1/2} B^N = O(N^{3+1/2} B^1). \]

Since in (2.4) we are only interested in the case \(|x_i^{N-1}| \leq N^{1-1}\),

Next notice that \(N = \frac{1}{2} N^{1-1}\) (recall \(d = 2\)) and \(4 \cdot 2^{-2N} = 2^{-2(N-1)}\), so that (2.7), (2.4) imply, denoting

\[\pi_1 = \frac{B}{N} \]

\[\pi_2 = \frac{1}{N} \]

\[\pi_3 = \frac{1}{N} \]

we have

\[I(I) \geq \left(\int \pi_1 \right) \pi_2 \pi_3 \phi^{(N)} \]

\[\geq \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

\[\geq \exp - \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

\[= \int \frac{B^N (x)}{x^N} \left(1+T \right)^{-\frac{1}{2}} H_4(x) e^{-\frac{x^2}{\sqrt{V}}} \]

\[\geq \exp - \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

\[\geq \exp - \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

\[\geq \exp - \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

\[\geq \exp - \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

\[\geq \exp - \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

\[\geq \exp - \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

\[\geq \exp - \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

\[\geq \exp - \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

\[\geq \exp - \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

\[\geq \exp - \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

\[\geq \exp - \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

\[\geq \exp - \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]

\[\geq \exp - \lambda \frac{1}{2} H_4(x) \left| \chi^3 (x) + \frac{(1-x)^B (x)}{x^B} \right| e^{-\frac{x^2}{\sqrt{V}}} \]
of random variables little correlated.

We try to write

\[\int \exp \left(\frac{1}{2} \tilde{E}_N (v_1^{(N)} ; t) \right) + \text{error} \]

where \(\tilde{E}_N \) is the average with respect to \((p, dz) = \text{distribution of} \ z_\Delta^{(N)} \), and \(T(v_1^{(N)} ; t) \) truncated expectation of order \(s \).

The fact that the \(z_\Delta \) variables are not too correlated (in our case they are actually independent) will tell us that the error is of the order of the volume of \(I \) in units of \(2^{-N} \), i.e. const \(|I|2^{dN} \) and not const \((|I|2^{dN})^{t+1} \) as it would be for strongly correlated fields \(z_\Delta^{(N)} \). The asymptotic freedom says that the constant is of the order of \(\lambda^2 (d+4)^2 |I| (1+2^N) \).

Hence we see that the errors in (2.13) will be of the order

\[\lambda^{t+1} (d+4)^2 |I| (1+2^N) \]

and therefore summable over \(N \) as soon as \((t+1)(d+4) > d \), i.e. if \(d = 2 \) already for \(t = 1 \) (if \(d = 3 \) we should take \(t = 3 \)).

\[\text{i) The calculation made before was just an attempt to estimate the error of (2.13) form below; the attempt was successful even though the result was not as good as the naive estimate (2.14) (e.g. we have not found a bound like \(\lambda^2 \) but only like \(\lambda^2 (\log |I|)^2 \)), which is, however, of order larger than 1 as \(\lambda \to 0 \).} \]

1. The Upper Bound in the Bernoulli Case

We proceed, again, recursively. The basic remarks are the following.

1) Let \(\alpha = (z_\Delta)_{\Delta \in B_\ell} \) be a random field.

Let \(\tilde{B}_N = \sqrt{V} \tilde{B}_N \) and \(\tilde{B}_{N-1} = 0 \), where

\[(3.1) \]

\[\tilde{B}_N = \frac{B_n}{(1+N)^2} = 0 \ (B \log \epsilon)^{-1} (1+N)^2 \]

and define

\[(3.2) \]

\[D_N (\phi) \leq (\phi \Delta \epsilon \epsilon, \ |X\Delta| > B_n) \]

\[(3.3) \]

\[R_N (\phi) = (\phi \Delta \epsilon \epsilon, \ |X\Delta| > \tilde{B}_N) \]

and notice that \(\phi \Delta \epsilon \epsilon, \ |X\Delta| > R_N \), implies, c.f.i. (1.10):

\[(3.6) \]

\[V_1^{(N)} (\phi) \leq V_1^{(N)} (\phi \Delta \epsilon \epsilon, \ |X\Delta| > B_n) \]

\[(3.7) \]

\[V_1^{(N)} (\phi) \leq V_1^{(N)} (\phi \Delta \epsilon \epsilon, \ |X\Delta| > D_N (\phi)) \]

Also, from (1.10)

\[(3.8) \]

\[V_1^{(N)} (\phi) \leq V_1^{(N)} (\phi \Delta \epsilon \epsilon, \ |X\Delta| > D_N (\phi)) + 4 \# (D_N) \frac{3}{2} \lambda 2^{-2N} (1+2^N) \]

where \(\# (D_N) = \text{number of tesserae in} \ R_N \), and \(\tilde{R}_N \) is the smallest set covered by \(\theta_{Q_{N-1}} \) containing \(R_N \). Remark then that (3.8), (1.10), (3.5) imply

\[(3.9) \]

\[V_1^{(N)} (\phi) \leq V_1^{(N)} (\phi \Delta \epsilon \epsilon, \ |X\Delta| > D_N (\phi)) + 4 \# (D_N) \frac{3}{2} \lambda 2^{-2N} (1+2^N) + \]

\[- \lambda 2^{-2N} (1+2^N) B_4 (R_N \sqrt{V} \tilde{B}_N) \# (D_{N-1}) \].
Hence
\[
\frac{V^{(N)}}{I, I \setminus D_N} \lesssim \frac{V^{(N)}}{I, I \setminus D_{N-1} \cup R_N} \leq \frac{\varepsilon}{N} \sum_{\Delta \in \mathcal{R}_N} 4\#(R_N) \frac{3}{2} \lambda(1+\gamma_N) 2^{-2N} + 2^{2N} N \frac{\varepsilon}{N} \sum_{\Delta \in \mathcal{R}_N} \frac{1-\chi_{\Delta}^{(N)}}{N} \frac{3}{2} \lambda(1+\gamma_N) 2^{-2N} + 2^{2N} N \frac{\varepsilon}{N} \sum_{\Delta \in \mathcal{R}_N} \frac{1-\chi_{\Delta}^{(N)}}{N} \frac{3}{2} \lambda(1+\gamma_N) 2^{-2N}
\]
(3.10)

where \(\chi_{\Delta}^{(N)} \) is the c.f. of the event
\[
|\varepsilon_{\Delta}^{(N)}| \geq \frac{\varepsilon}{N}.
\]
(3.11)

Hence if \(R \) is a set paved by \(Q_N \),
\[
\sum_{\Delta \in \mathcal{R}_N} \sum_{R \in \mathcal{R}_N} \frac{1-\chi_{\Delta}^{(N)}}{N} \frac{3}{2} \lambda(1+\gamma_N) 2^{-2N} \leq \frac{\varepsilon}{N} \sum_{\Delta \in \mathcal{R}_N} \frac{1-\chi_{\Delta}^{(N)}}{N} \frac{3}{2} \lambda(1+\gamma_N) 2^{-2N}
\]
(3.12)

Applying the lemma of the preceding section the last integral can be bounded by
\[
\sum_{\Delta \in \mathcal{R}_N} \sum_{R \in \mathcal{R}_N} \frac{1-\chi_{\Delta}^{(N)}}{N} \frac{3}{2} \lambda(1+\gamma_N) 2^{-2N} \leq 4\#(R_N) \frac{3}{2} \lambda(1+\gamma_N) 2^{-2N} \frac{\varepsilon}{N} \sum_{\Delta \in \mathcal{R}_N} \frac{1-\chi_{\Delta}^{(N)}}{N} \frac{3}{2} \lambda(1+\gamma_N) 2^{-2N}
\]
(3.13)

\[
\sum_{\Delta \in \mathcal{R}_N} \sum_{R \in \mathcal{R}_N} \frac{1-\chi_{\Delta}^{(N)}}{N} \frac{3}{2} \lambda(1+\gamma_N) 2^{-2N} \leq 4\#(R_N) \frac{3}{2} \lambda(1+\gamma_N) 2^{-2N} \frac{\varepsilon}{N} \sum_{\Delta \in \mathcal{R}_N} \frac{1-\chi_{\Delta}^{(N)}}{N} \frac{3}{2} \lambda(1+\gamma_N) 2^{-2N}
\]
(3.14)

we have found:
\[
\sum_{\Delta \in \mathcal{R}_N} \sum_{R \in \mathcal{R}_N} \frac{1-\chi_{\Delta}^{(N)}}{N} \frac{3}{2} \lambda(1+\gamma_N) 2^{-2N} \leq 4\#(R_N) \frac{3}{2} \lambda(1+\gamma_N) 2^{-2N} \frac{\varepsilon}{N} \sum_{\Delta \in \mathcal{R}_N} \frac{1-\chi_{\Delta}^{(N)}}{N} \frac{3}{2} \lambda(1+\gamma_N) 2^{-2N}
\]
(3.15)

\[
\sum_{\Delta \in \mathcal{R}_N} \sum_{R \in \mathcal{R}_N} \frac{1-\chi_{\Delta}^{(N)}}{N} \frac{3}{2} \lambda(1+\gamma_N) 2^{-2N} \leq 4\#(R_N) \frac{3}{2} \lambda(1+\gamma_N) 2^{-2N} \frac{\varepsilon}{N} \sum_{\Delta \in \mathcal{R}_N} \frac{1-\chi_{\Delta}^{(N)}}{N} \frac{3}{2} \lambda(1+\gamma_N) 2^{-2N}
\]
(3.16)

and it is easily realized that the series in parenthesis behaves as \(\lambda \to 0 \) as (2.11) with a different \(G \), say \(G' \). Hence:
\[
E(\lambda) \leq (G+G') \left(\frac{\varepsilon}{N} \right)^2 \log(e+\lambda)^{-1} B.
\]
(3.18)

\begin{itemize}
\item 4. Hierarchical Model to Order \(d = 2 \)
\end{itemize}

We define the renormalized interaction to order \(t \), for \(d = 2 \), as:
\[

\begin{equation}
V_{t; I}^N = V_I^N - \frac{t}{k_2} \sum_{k=2}^{T(N)} \frac{T_{V_I^N}(k)}{k_1}.
\end{equation}

(4.1)

Consider for example \(t = 2 \).

It is natural to proceed as before; however, it will no longer be so easy because
\[v_{2;1}^{(N-1)} = \frac{1}{2} \tilde{v}_{2;1}^{(N)} + \frac{1}{2} \tilde{v}_{2;1}^{(N)} \]

Therefore we introduce, recursively

\[\tilde{v}_{2;1}^{(N-k)} = \left(\tilde{v}_{2;1}^{(N-k+1)} + \frac{1}{2} \tilde{v}_{2;1}^{(N-k+1)} \right) \]

(4.3)

where \(\{ 1 \} \) is truncation of a polynomial in \(\lambda \) to order \(\lambda^2 \).

To proceed as before one needs to first get an idea on how \(\tilde{v}_{2;1}^{(N-k)} \) looks like: it is easy to see that (by induction)

\[\tilde{v}_{2;1}^{(N-k)} = \int_{-\lambda}^{\lambda} \tilde{v}_{2;1}^{(N-k)} d\lambda - \frac{1}{2} \int_{-\lambda}^{\lambda} C_{\alpha}^{(N-k)} d\lambda \]

(4.5)

hence if \(\tilde{c} = \alpha \{ s \} \), \(\tilde{c} = \beta \{ s \} \),

\[\tilde{v}_{2;1}^{(N-k)} = \int_{-\lambda}^{\lambda} \tilde{c}^{(N-k)} d\lambda - \frac{1}{2} \int_{-\lambda}^{\lambda} C_{\alpha}^{(N-k)} d\lambda \]

(4.6)

hence also \(\tilde{c}^{(N-k)} \) is a polynomial of degree \(N-k \) and the order of the integral.

The integral

\[\int_{-\lambda}^{\lambda} \tilde{c}^{(N-k)} d\lambda \]

can be graphically represented as the integral of the graph

where each line represents \(\tilde{c} \) and each internal line represents \(C^{(N)} \). Integration over \(\tilde{c} \) simply gives the same result described by (4.8) but with the lines interpreted as \(\tilde{c} \), now. The last term in (4.6) can be treated likewise and yields the same result as (4.8) with the external lines interpreted as \(\tilde{c} \) and internal ones also interpreted as \(C^{(N-k)} \).

Therefore we can write (4.5) as

\[\tilde{v}_{2;1}^{(N-k)} = \tilde{v}_{2;1}^{(N-k)} + \frac{1}{2} \tilde{v}_{2;1}^{(N-k)} \]

(4.9)

When a bar on a graph means that it has to be computed as the difference of two graphs with the internal lines once considered as \(C^{(N)} \) and the other time as \(C^{(N-k)} \).

Since the model is hierarchical it is clear that the structure of \(\tilde{v}_{2;1}^{(N-k)} \) will be

\[\tilde{v}_{2;1}^{(N-k)} = \sum_{\lambda \in D} \{ -\lambda \} \sum_{\lambda \in D} \tilde{v}_{2;1}^{(N-k)} H_4(X_{\lambda}^{(N-k)}) \]

(4.10)

and we are now concerned by finding some expressions for \(f_{N,N-k}^{(N-k)} \).

We want to show that \(f_{N,N-k}^{(N-k)} \) can be written as

\[f_{N,N-k}^{(N-k)} = \frac{1}{2} \tilde{c}_{N,N-k}^{(N-k)} H_4(X_{\lambda}^{(N-k)}) + \]

(4.11)

and

\[\tilde{c}_{N,N-k}^{(N-k)} (N,N-k) \leq \tilde{c} \quad \forall N,k. \]

(4.12)

If this were true we would have proven the lower bound; we could
in fact proceed recursively using the following lemma:

Lemma 2: Let \(|X| \leq B^1\) and let \(X = \frac{z^2}{\sqrt{T}}\), \(B^1 \geq 1\), \(B^1 \sqrt{T} \geq 1\) then if \(V\) has the form

\[
V(X) = \sum_{n=1}^{D} a^n X^n
\]

(4.13)

and if \(\|a\| = \sup_{n} |a^n|\) then

\[
\int e^{-x^2} \frac{dx}{\sqrt{T}} = \exp\left\{ \sum_{j=0}^{\infty} \frac{\epsilon_{j}(V_{j+1})}{j!} \right\} \epsilon_{j}(B^1, B^1, \|a\|)
\]

where, for suitable constants \(C_1, C_2, C_3, C_4, C_5\)

\[
\left| \epsilon_{j}(B^1, B^1, \|a\|) \right| \leq \frac{1}{2} \left(C_1 B^1 \|a\| \right)^{2j} + C_2 e^{-C_3 B^1} + C_4 B^1 \|a\| + C_5
\]

(4.14)

which allows to deduce

\[
\int e^{-x^2} X^N \frac{dx}{\sqrt{T}} \sim \frac{1}{2 \sqrt{\pi}} \frac{2^{N-k}}{N-k} \left(X \frac{dx}{\sqrt{T}} \right)^{N-k}
\]

(4.15)

\[
\sum_{j=1}^{N-k} \frac{\epsilon_{j}(V_{j+1})}{j!}
\]

where \(\epsilon_{j}(B^1, B^1, \|a\|)\) is

\[
C_1 \left(C_1 B^1 \|a\| \right)^{2j} e^{-C_3 B^1} + C_4 B^1 \|a\| + C_5
\]

(4.16)

which can be summed over \(N\) giving a result \(O(\lambda^2 (1 + e^{-1})^{-1})\).

(4.15), (4.16) are not yet the result that we want because we have still to replace

\[
\sum_{j=1}^{N-k} \frac{\epsilon_{j}(V_{j+1})}{j!}
\]

by its second order truncation with respect to \(\lambda\). This is done easily, since, clearly, the difference between these two quantities is

\[
\frac{1}{2} \left(\lambda \cdot \frac{B^1}{2} \right)^{-2(N-k)+3}
\]

(4.17)

and, therefore, it can be put into the error.

It remains to prove the bounds (4.11), (4.12). Consider for instance \(\frac{314}{2} - \square\), which is the most difficult and dangerous:

\[
\frac{314}{2} \int_0^1 \frac{\epsilon_{n}(N) - \epsilon_{n}(N-k)}{\epsilon_{n}(N-k)} d\epsilon_{n} = \frac{314}{2} \int_0^1 \frac{\epsilon_{n}(N) - \epsilon_{n}(N-k)}{\epsilon_{n}(N-k)} d\epsilon_{n}
\]

(4.18)

\[
= \frac{314}{2} \int_0^1 \frac{\epsilon_{n}(N) - \epsilon_{n}(N-k)}{\epsilon_{n}(N-k)} d\epsilon_{n}
\]

notice that \(\epsilon_{n}(N)\) and \(\epsilon_{n}(N-k)\) must be equal, unless \(\epsilon_{n}\) are in the same tessera of \(Q_{N-k}\). Then the above term is

\[
\frac{314}{2} \int_0^1 \frac{\epsilon_{n}(N) - \epsilon_{n}(N-k)}{\epsilon_{n}(N-k)} d\epsilon_{n}
\]

(4.19)

So let us study

\[
0 \leq \int \frac{\epsilon_{n}(N) - \epsilon_{n}(N-k)}{\epsilon_{n}(N-k)} d\epsilon_{n} \leq \int \frac{\epsilon_{n}(N) - \epsilon_{n}(N-k)}{\epsilon_{n}(N-k)} d\epsilon_{n}
\]

(4.18)

\[
= \sum_{i=N-k+1}^{N} \int \frac{\epsilon_{n}(N) - \epsilon_{n}(N-k)}{\epsilon_{n}(N-k)} d\epsilon_{n}
\]

(4.19)
\[\sum_{i=N-k+1}^{N} \left(\frac{1}{i+1} \right)^3 2^{3(d-2)\lambda} 2^{2d(i-1)} \frac{1}{i+1} (1-\lambda^2) (N-k) \]

which can be bounded by

\[4 \lambda \sum_{i=N-k+1}^{N} \left(\frac{1}{i+1} \right)^3 2^{2(d-6)\lambda} 2^{d(N-k)} \]

Hence, the coefficient of \(H_2(X_N) \), called before \(C_{N,N-k} \), can be bounded by

\[\frac{4}{2} \lambda^2 \sum_{i=N-k+1}^{N} \left(\frac{1}{i+1} \right)^3 2^{(2d-6)\lambda} 2^{d(N-k)} \]

and this is bounded by

\[\bar{C} \lambda^2 \sum_{i=N-k+1}^{N} \left(\frac{1}{i+1} \right)^4 2^{2(d-4)(N-k)} \]

hence, if \(d = 2 \), (4.11), (4.12) are proven.

In three dimensions this point would be the only different point in the whole proof. In order to avoid this problem the definition of renormalized hamiltonian will be changed so that the coefficient of \(H_2(X_N) \), just computed, turns out to be just zero.

This can be achieved by introducing in \(V^{(N)}_{0,1} \) a "mass counterterm", i.e.

\[V^{(N)}_{0,1} = \lambda \int_{\sum_{i} \xi_i} \frac{1}{i+1} \xi_i^3 \frac{1}{i+1} \xi_i \frac{1}{i+1} \xi_i^2 \frac{1}{i+1} \xi_i \]

Then the interaction renormalized to order \(t \) becomes

\[V^{(N)}_{t,N} = \left[V^{(N)}_{0,1} - \sum_{E \in \Lambda} \int_{i=1}^{t} (Y^{(N)}_{0,1}) \right] (t) \]

and the above scheme works for all \(t \geq 3 \). The only thing that has really to be checked is the bound on the coefficients \(C_{N,N-k} \). This is long but straightforward.

5. The Upper Bound in the Case \(d = 2, \quad t = 2 \)

This is essentially a repetition of the argument in §1. However, some comments seem to be important.

In fact, the presence of very high order polynomials in the \(V^{(N)} \) puts some doubts about the possibility of removing the field cut-offs.

The reason why such terms do not cause problems is that at the beginning one can make use of the locality of the interaction to "eliminate" the interaction from the regions where the fields are large.

Let us recall the structure of \(V^{(N)}_{1} \):

\[V^{(N)}_{1} = -\lambda \int_{\sum_{i} \xi_i} \frac{1}{i+1} \xi_i^3 \frac{1}{i+1} \xi_i \frac{1}{i+1} \xi_i^2 \frac{1}{i+1} \xi_i \]

\[= -\lambda \int_{\sum_{i} \xi_i} \frac{1}{i+1} \xi_i^3 \frac{1}{i+1} \xi_i \frac{1}{i+1} \xi_i^2 \frac{1}{i+1} \xi_i \]

and \(\gamma_{\Lambda} \) has a bound like

\[\gamma_{\Lambda} = \frac{1}{2} \int_{\sum_{i} \xi_i} \frac{1}{i+1} \xi_i^3 \frac{1}{i+1} \xi_i \frac{1}{i+1} \xi_i^2 \frac{1}{i+1} \xi_i \]

Therefore, if we introduce the constants

\[B_{N} = \gamma_{\Lambda} \int_{\sum_{i} \xi_i} \frac{1}{i+1} \xi_i^3 \frac{1}{i+1} \xi_i \frac{1}{i+1} \xi_i^2 \frac{1}{i+1} \xi_i \]

and the regions

\[\sum_{i=N-k+1}^{N} \left(\frac{1}{i+1} \right) 2^{3(d-2)\lambda} 2^{2d(i-1)} \frac{1}{i+1} (1-\lambda^2) (N-k) \]

\[\frac{4}{2} \lambda \sum_{i=N-k+1}^{N} \left(\frac{1}{i+1} \right) 2^{(2d-6)\lambda} 2^{d(N-k)} \]

\[\frac{4}{2} \lambda^2 \sum_{i=N-k+1}^{N} \left(\frac{1}{i+1} \right) 2^{(2d-6)\lambda} 2^{d(N-k)} \]

\[\bar{C} \lambda^2 \sum_{i=N-k+1}^{N} \left(\frac{1}{i+1} \right) 2^{2(d-4)(N-k)} \]

hence, if \(d = 2 \), (4.11), (4.12) are proven.

In three dimensions this point would be the only different point in the whole proof. In order to avoid this problem the definition of renormalized hamiltonian will be changed so that the coefficient of \(H_2(X_N) \), just computed, turns out to be just zero.

This can be achieved by introducing in \(V^{(N)}_{0,1} \) a "mass counterterm", i.e.

\[V^{(N)}_{0,1} = \lambda \int_{\sum_{i} \xi_i} \frac{1}{i+1} \xi_i^3 \frac{1}{i+1} \xi_i \frac{1}{i+1} \xi_i^2 \frac{1}{i+1} \xi_i \]

Then the interaction renormalized to order \(t \) becomes

\[V^{(N)}_{t,N} = \left[V^{(N)}_{0,1} - \sum_{E \in \Lambda} \int_{i=1}^{t} (Y^{(N)}_{0,1}) \right] (t) \]

and the above scheme works for all \(t \geq 3 \). The only thing that has really to be checked is the bound on the coefficients \(C_{N,N-k} \). This is long but straightforward.

5. The Upper Bound in the Case \(d = 2, \quad t = 2 \)

This is essentially a repetition of the argument in §1. However, some comments seem to be important.

In fact, the presence of very high order polynomials in the \(V^{(N)} \) puts some doubts about the possibility of removing the field cut-offs.

The reason why such terms do not cause problems is that at the beginning one can make use of the locality of the interaction to "eliminate" the interaction from the regions where the fields are large.

Let us recall the structure of \(V^{(N)}_{1} \):

\[V^{(N)}_{1} = -\lambda \int_{\sum_{i} \xi_i} \frac{1}{i+1} \xi_i^3 \frac{1}{i+1} \xi_i \frac{1}{i+1} \xi_i^2 \frac{1}{i+1} \xi_i \]

\[= -\lambda \int_{\sum_{i} \xi_i} \frac{1}{i+1} \xi_i^3 \frac{1}{i+1} \xi_i \frac{1}{i+1} \xi_i^2 \frac{1}{i+1} \xi_i \]

and \(\gamma_{\Lambda} \) has a bound like

\[\gamma_{\Lambda} = \frac{1}{2} \int_{\sum_{i} \xi_i} \frac{1}{i+1} \xi_i^3 \frac{1}{i+1} \xi_i \frac{1}{i+1} \xi_i^2 \frac{1}{i+1} \xi_i \]

Therefore, if we introduce the constants

\[B_{N} = \gamma_{\Lambda} \int_{\sum_{i} \xi_i} \frac{1}{i+1} \xi_i^3 \frac{1}{i+1} \xi_i \frac{1}{i+1} \xi_i^2 \frac{1}{i+1} \xi_i \]

and the regions
\[D_N (\delta) = \{ \Delta | \Delta \in Q_N, |x_{\Delta}^N| > R_N \} \]
\[R_N (\delta) = \{ \Delta | \Delta \in Q_N, |x_{\Delta}^R| > R_N \} \] \hspace{1cm} (5.4)

It is then an already remarked, true that
\[R_N (\delta) \supseteq D_N (\delta) \setminus D_{N-1} (\delta) \] \hspace{1cm} (5.5)

\[\forall \delta, \text{ because in } D_N \setminus D_{N-1}, \text{ one has } |x| > R_N \gg R_{N-1} \] also:
\[\delta \in D_{N-1} (\delta \setminus R_N (\delta) = |x_{\Delta}^{N-1}| \geq \frac{B_{N-1} \sqrt{N} - B_N}{\sqrt{N}} \geq \frac{1}{2} R_{N-1} \gg 1. \]

Therefore
\[\psi (N) \leq \hat{\psi} (N) \leq \psi (N) \] \hspace{1cm} (5.6)

and to obtain an upper bound it is enough to study
\[\int \exp \left\{ \hat{\psi} (N) \right\} P_N (dx), \] \hspace{1cm} (5.7)

Let us call \(\chi_{\Delta}^R \) the characteristic function of
\[\{ x | x^R < \log (e+\lambda^{-1}) \} \] \hspace{1cm} (5.8)

and put \(x_{\Delta}^0 = 1 - \chi_{\Delta}^R \). Then
\[\int \exp \left\{ \psi (N) \right\} P_N (dx) = \sum_{\Delta \in Q_N} \int_{\Delta} \chi_{\Delta}^{R} \chi_{\Delta}^{N} \psi (N) P_N (dx). \] \hspace{1cm} (5.9)

We are still bothered by the fact that \(\hat{\psi} (N) \) contains "interaction" inside \(R \) where something still "goes wrong".

Therefore, we make a "generous" estimate; if
\[\hat{\psi} (N) \leq \frac{C_1}{2} \int \exp \left\{ (1+\lambda)^2 \right\} H_4 (B_N) 2^{-2N} \# (R) \] \hspace{1cm} (5.10)

and if \(R \) denotes the smallest set paved by \(Q_{N-1} \) containing \(R \)
\[\hat{\psi} (N) \leq \frac{C_1}{2} \int \exp \left\{ (1+\lambda)^2 \right\} H_4 (B_N) 2^{-2N} \# (R) + \psi (N) \] \hspace{1cm} (5.11)

when \(\sum_{\Delta \in Q_{N}} \frac{B_{N-1} B_N}{\sqrt{N}} \) and, under this condition, we see that
\[\psi (N) \leq C_1 \int \exp \left\{ (1+\lambda)^2 \right\} H_4 (B_N) 2^{-2N} \# (R) + \psi (N) \] \hspace{1cm} (5.12)

It should be stressed, perhaps, that \(\psi \) is a "nonlocal" term (involving an integral over \(I \)) therefore modifications of the region where there is interaction produce errors due to the change of \(\psi \); such errors are very large, being proportional to the areas of the deleted regions. They have been absorbed in the errors as indicated above because of positivity or because \(H_4 (B_N) \) is large (this explains why we have not set \(C_1 = 4C \) as it would be the case if this fact had been overlooked). Notice, however, \(\psi (N) = \sum_{\Delta \in \tilde{\Sigma}_{N}} \psi (N) \), \(\forall \delta \) paved by \(R_{N-1} \).

We can now perform the integration over \(z^{(N)} \); we proceed as usual
\[\int P_N (dx) \exp \left\{ \psi (N) \right\} \tilde{\Sigma}_{N-1} \tilde{B}_{N} \tilde{R}_{N} \tilde{R}_{N} \tilde{C}_{N} \] \hspace{1cm} (5.13)

\[\leq \int P_{N-1} (dx) \exp \left\{ \psi (N-1) \right\} \tilde{B}_{N-1} \tilde{R}_{N-1} \tilde{R}_{N-1} \tilde{C}_{N-1} \] \hspace{1cm} (5.14)

\[\leq \int P_{N-1} (dx) \exp \left\{ \psi (N-1) \right\} \tilde{B}_{N-1} \tilde{R}_{N-1} \tilde{R}_{N-1} \tilde{C}_{N-1} \] \hspace{1cm} (5.15)

\[\leq \int P_{N-1} (dx) \exp \left\{ \psi (N-1) \right\} \tilde{B}_{N-1} \tilde{R}_{N-1} \tilde{R}_{N-1} \tilde{C}_{N-1} \] \hspace{1cm} (5.16)

\[\leq \int P_{N-1} (dx) \exp \left\{ \psi (N-1) \right\} \tilde{B}_{N-1} \tilde{R}_{N-1} \tilde{R}_{N-1} \tilde{C}_{N-1} \] \hspace{1cm} (5.17)

\[\leq \int P_{N-1} (dx) \exp \left\{ \psi (N-1) \right\} \tilde{B}_{N-1} \tilde{R}_{N-1} \tilde{R}_{N-1} \tilde{C}_{N-1} \] \hspace{1cm} (5.18)

\[\leq \int P_{N-1} (dx) \exp \left\{ \psi (N-1) \right\} \tilde{B}_{N-1} \tilde{R}_{N-1} \tilde{R}_{N-1} \tilde{C}_{N-1} \] \hspace{1cm} (5.19)

\[\leq \int P_{N-1} (dx) \exp \left\{ \psi (N-1) \right\} \tilde{B}_{N-1} \tilde{R}_{N-1} \tilde{R}_{N-1} \tilde{C}_{N-1} \] \hspace{1cm} (5.20)

where \(\varepsilon_{(N)} \) is the estimate of the error in the lower bound (changed in sign). However, inside \(\tilde{\Sigma}_{N-1} \) the field \(x^{(N-1)} \) is small (\(\sim B_{N-1} \)) hence the high order terms in \(\psi (N) \) which are not constant are really "negligible" compared to the leading
order terms are really small compared to the leading term which is positive because $\frac{h}{(1+h)^2}$ is very large. This is true if h is large enough, $h \geq h_0$. Since the higher orders are of higher order in λ this will be true for all $h \geq 0$ if λ is small enough.

Finally integrating over $x^{[h]}$ the exp $\tilde{V}_{1\backslash D_{h-1}}$ when $\tilde{B}_{h-1} = 1$ gives us a result

$$\tilde{V}_{1\backslash D_{h-1}} \leq \tilde{V}_{1\backslash D_{h-1}} + \#(R)Z^{-2N} \tilde{c}^{[1]}(1+h)^2 H_4(B_{h-1})$$

and by the very definition of $\tilde{V}_{1\backslash D_{h-1}}$, the higher order terms are really "higher order" we immediately realize that

$$\tilde{V}_{1\backslash D_{h-1}} \leq \tilde{V}_{1\backslash D_{h-1}} + \#(R) \tilde{c}^{[1]} \lambda e^{(1+h)^2} Z^{2h} H_4(B_{h-1})$$

$$= \tilde{V}_{1\backslash D_{h-1}} + |\text{error}|$$

Therefore we are in an inductive position and we have achieved the estimate:

$$E_+(\lambda) = \sum_{h=1}^{\infty} (c_+(h) + n(h)) + E(\lambda)$$

where

$$E(\lambda) = \max_0 \tilde{V}_{1\backslash D_{h-1}}(\cdot) \tilde{V}_{1\backslash D_{h-1}} \tilde{V}_{1\backslash D_{h-1}}$$

and $E(\lambda) = 0$ if λ is small enough.

Since $E_+(\lambda)$ is easily seen to have the wanted form (i.e. $\lambda^{-2} E_+(\lambda) \to 0$ as $\lambda \to 0$) the proof is finished.

We have now all the basic ingredients and mechanisms to attack more complex problems like the hierarchical Markov field or the Euclidean field.

6. The Euclidean Field Theory

I shall now direct consider the case of the three dimensional ϕ^4 theory without illustrating the case of the Markov field (see [3]).
We define a Gaussian field Z distributed with covariance operator

$$A = C \frac{1-D}{(1+\lambda^2)^2}$$

where D is the Laplace operator and the constant C is chosen so that

$$E(Z_{\xi}^2) = \frac{1}{2}$$

i.e.

$$\frac{1}{(2\pi)^3} \int_\mathbb{R}^3 \frac{1}{(1+\lambda^2)(1+\lambda^2)} \, d^3k = \frac{1}{2}$$

Then the Euclidean field ϕ is defined as

$$\phi_{\xi} = \sum_{N=0}^{\infty} \sqrt{N} \, Z_N$$

where Z_N are Gaussian fields independently distributed so that $Z_{\xi}^{(N)}$ has the same distribution of Z_{ξ}

$$\phi_{\xi} \sim_{\text{prob.}} \frac{Z}{\sqrt{2}}$$

The field (6.4) has covariance operator $A_{\xi} = C^{-1}(1-D)$ and (6.4), (6.5) is the probabilistic interpretation of the obvious relation

$$\frac{1}{1-D} = \sum_{N=0}^{\infty} \frac{1}{2N} - \frac{1}{\gamma^2 (N+1)}$$

It is natural to introduce the cut-off and the normalized fields

$$\phi_{\xi}^{(N)} = \sum_{k=0}^{N} \sqrt{k} \, \phi_{\xi}(k)$$

$$X_{\xi}^{(N)} = \frac{Z_{\xi}^{(N)}}{\sqrt{Z_{\xi}^{(N)}}}$$

We then define the "third order renormalized interaction" $V_{\xi}^{(N)}$ as

$$\lim_{\lambda \to 0} \lambda^{-3} E(\lambda) = 0$$

This problem contains a new difficulty with respect to the already treated models: the field $Z^{(N)}$ is not built with simpler fields which are "independent on a scale γ^{-N}"; however, the covariance of $Z^{(N)}$ decays exponentially over a scale γ^{-N}. This means, in colourful language, that the ultraviolet problem is now coupled with an infrared problem: the volume of I "felt by the high frequencies" will always be very large (γ^{-N}).
The idea of the proof of (6.13), (6.14) is the same as the one used in the former case. One integrates over the high frequencies showing that the result has the right form in order to apply a recursion argument.

Therefore it is natural to introduce, as in the hierarchical case, the quantity \(\tilde{V}^{(h)}_I \) defined as

\[
\tilde{V}^{(h)}_I = V_I^{(h)}
\]

\[
\tilde{V}^{(h)}_I = \left(\sum_{h=1}^{\infty} (V_I^{(h)} + V_I^{(h+1)}) \right) + \frac{1}{2} \sum_{h=1}^{\infty} (V_I^{(h+1)} + V_I^{(h+2)}) + \frac{1}{3} \sum_{h=1}^{\infty} (V_I^{(h+2)} + V_I^{(h+3)})
\]

with the notation naturally following the one previously used.

Before continuing it is good to get a feeling, and also a workable form, for \(\tilde{V}^{(N)}_I \). This is the so called "small diagram theory".

The result is

\[
\tilde{V}^{(h)}_I = -\lambda I \sum_{h=1}^{\infty} (V_I^{(h)} + V_I^{(h+1)}) \int \frac{d\xi}{(\xi - \zeta_n)^2} \sum_{\xi \neq \zeta_n} \frac{1}{(n - |\xi - \zeta_n|)^{1/2}} e^{-\gamma h d(\xi, \zeta)}
\]

\[
\tilde{V}^{(h)}_I = -\frac{1}{2}\lambda I \sum_{h=1}^{\infty} (V_I^{(h)} + V_I^{(h+1)}) \int \frac{d\xi}{(\xi - \zeta_n)^2} \sum_{\xi \neq \zeta_n} \frac{1}{(n - |\xi - \zeta_n|)^{1/2}} e^{-\gamma h d(\xi, \zeta)}
\]

where in the above formula the choices of the indices which give rise to meaningless expressions (e.g. if \(r = 0 \) or \(n = 0 \); \(\eta \), \(\xi \), \(\zeta \), \(\eta \), \(\zeta \) can be defined) should be interpreted by simply ignoring the indices which cannot make sense.

The coefficients \(\bar{A}^{(h)} \) turn out to have the following properties:

\[
\bar{A}^{(h)} \geq \bar{A}_{\xi n} (\gamma h |\xi - \zeta_n|)^{3/2} \min(1, h |\xi - \zeta_n|) \leq \bar{A}
\]

The calculation leading to (6.16) is a long but simple algebraic analysis. It can be most easily done using diagrams. Represent \(\tilde{V}^{(N)}_I \) as

\[
\tilde{V}^{(h)}_I \quad (6.18)
\]

Then \(\tilde{V}^{(h)}_I \) will have a representation like

\[
\tilde{V}^{(h)}_I \quad (6.19)
\]
where the T means that "there is a hard line connecting all the points of the graph"; the combinatorial coefficients and the actual combination of covariances entering into the above expressions have to be found by more careful analysis (this is reminded by the index R). See, for details, appendix B of [3], [5].

Look for instance at: \(T \)

\[
\begin{align*}
&= \frac{1}{2} \sum_{I=1}^{N} \left(c_{I}^{[\tilde{N}]} - c_{I}^{[N]} \right) \left(c_{I}^{[\tilde{N}]} - c_{I}^{[N]} \right) \left(c_{I}^{[\tilde{N}]} - c_{I}^{[N]} \right) : d\delta d\eta \cdot \frac{1}{2} \sum_{I=1}^{N} \left(c_{I}^{[\tilde{N}]} - c_{I}^{[N]} \right)^{2} \cdot d\delta d\eta \cdot \frac{1}{2} \sum_{I=1}^{N} \left(c_{I}^{[\tilde{N}]} - c_{I}^{[N]} \right)^{2} \cdot d\delta d\eta
\end{align*}
\]

(6.20)

So we shall be able to bound the interaction $\gamma^{(N)}$ when

\[
\begin{align*}
&\leq \sum_{I=1}^{N} \int_{\mathbb{R}^{3}} \left| X_{I}^{(N)} - X_{I}^{(N)} \right| \cdot d\delta d\eta \cdot \frac{1}{2} \sum_{I=1}^{N} \left(c_{I}^{[\tilde{N}]} - c_{I}^{[N]} \right)^{2} \cdot d\delta d\eta
\end{align*}
\]

(6.21)

It is therefore natural, following the scheme of the Bernoulli case to introduce the following regions

\[
\begin{align*}
&\mathbb{D}_{N}^{a}(\xi) = \{ \xi \mid \left| X_{I}^{(N)} - X_{I}^{(N)} \right| \leq \mathbb{B}_{N}^{a}(1 + \gamma^{N}) d(\xi, I) \}
\end{align*}
\]

(6.22)

As another example we consider the graph: \(\square \)

which gives rise to (if $C_{L} = c_{L}^{[N]}$):

\[
\begin{align*}
&\leq \frac{1}{2} \sum_{I=1}^{N} \int_{\mathbb{R}^{3}} \left| X_{I}^{(N)} - X_{I}^{(N)} \right| \cdot d\delta d\eta \cdot \frac{1}{2} \sum_{I=1}^{N} \left(c_{I}^{[\tilde{N}]} - c_{I}^{[N]} \right)^{2} \cdot d\delta d\eta
\end{align*}
\]

(6.23)

and this corresponds to $r = 1$, $m = 2$ and the A coefficient is

\[
\begin{align*}
&\leq \frac{1}{2} \sum_{I=1}^{N} \int_{\mathbb{R}^{3}} \left| X_{I}^{(N)} - X_{I}^{(N)} \right| \cdot d\delta d\eta \cdot \frac{1}{2} \sum_{I=1}^{N} \left(c_{I}^{[\tilde{N}]} - c_{I}^{[N]} \right)^{2} \cdot d\delta d\eta
\end{align*}
\]

(6.24)

So we shall be able to bound the interaction $\gamma^{(N)}$ when

\[
\begin{align*}
&\leq \sum_{I=1}^{N} \int_{\mathbb{R}^{3}} \left| X_{I}^{(N)} - X_{I}^{(N)} \right| \cdot d\delta d\eta \cdot \frac{1}{2} \sum_{I=1}^{N} \left| X_{I}^{(N)} - X_{I}^{(N)} \right| \cdot d\delta d\eta
\end{align*}
\]

(6.25)

It is therefore natural, following the scheme of the Bernoulli case to introduce the following regions

\[
\begin{align*}
&\mathbb{D}_{N}^{a}(\xi) = \{ \xi \mid \left| X_{I}^{(N)} - X_{I}^{(N)} \right| \leq \mathbb{B}_{N}^{a}(1 + \gamma^{N}) d(\xi, I) \}
\end{align*}
\]

(6.26)

Notice that \mathbb{D}_{N}^{a}, \mathbb{D}_{N}^{b} are "arbitrary" open sets while $\mathbb{R}_{N}^{a}(\xi)$ is a "closed" set. By definition: \(\mathbb{R}_{N}^{a}(\xi) \) is defined in a substantially different way from \mathbb{D}_{N}^{a} and \mathbb{D}_{N}^{b}. Alternatively we could also define \mathbb{D}_{N}^{a} and \mathbb{D}_{N}^{b} to be the smallest \mathbb{Q}_{N}-pavable sets containing the above defined sets: this would not be, however, a natural definition as it was "by accident", in the hierarchical case.
We also define
\[\tilde{\psi}^{(h)}_1(\theta) = \text{(same as (6.16) with } I_1 \text{ replaced by } \hat{I}_1, \text{ and } (I_1 \setminus \hat{I}_1(\theta))^2 \text{ replaced by } I_1 \setminus I_1). \] (6.27)

where \(I_1 \) and \((I_1 \setminus \hat{I}_1(\theta))^2 \) are replaced by \(I_1 \setminus I_1 \).

Calling \(\hat{I}_1 = I_1 \setminus \hat{I}_1(\theta) \) this means that we replace \(I_1 \) by \(\hat{I}_1 \) everywhere and, then, \(I_1 \setminus I_1 \) by \((I_1 \setminus I_1)/\hat{I}_1(\theta))^2\). The \(\Lambda \)-coefficients that are put into the integrals defining (6.27) are those relative to the region \(I_1 \).

The above definition of \(\tilde{\psi} \) is slightly simpler than the one of ref. [5]; it seems, however, as good. On the other hand it makes the proof of the basic inequalities (6.28) \(\tilde{\psi} \) below slightly harder, (see [5]). The functions \(\tilde{\psi} \) verify some inequalities, as in the Bernoulli case: suppose that \(\Lambda \) is large enough, i.e., \(\Lambda \) larger than the largest zero of \(H_{\alpha}(h) \), then \(\exists \, h, \alpha, \), and
\[h \leq \tilde{\psi}^{(h)}(h) \] (6.28)

\[h \leq \tilde{\psi}^{(h)}(h) \leq \tilde{\psi}^{(h)}(h) \] (6.29)

where \(h^{(h)}(h) = \{ \xi \mid \xi \in \Omega, \text{ and } (\xi, h^{(h)}(h)) \in (z_1^{(h)}(\xi), z_2^{(h)}(\xi)) \} \) and
\[h^{(h)}(h) = \{ \xi \mid \xi \in \Omega, \text{ and } (\xi, h^{(h)}(h)) \in (z_1^{(h)}(\xi), z_2^{(h)}(\xi)) \} \] (6.30)

where \(\delta_1^{(h)}(\xi) = \{ \xi \mid \xi \in \Omega, \text{ and } (\xi, h^{(h)}(h)) \in (z_1^{(h)}(\xi), z_2^{(h)}(\xi)) \} \) and
\[\delta_1^{(h)}(\xi) = \{ \xi \mid \xi \in \Omega, \text{ and } (\xi, h^{(h)}(h)) \in (z_1^{(h)}(\xi), z_2^{(h)}(\xi)) \} \] (6.31)

where \(\delta_1^{(h)}(\xi) \) is defined as (6.27), replacing \(I_1 \) everywhere in the integration regions, by \(\text{S} \setminus \hat{I}_1(\theta) \) and, then, \((I_1 \setminus \hat{I}_1(\theta))^2 \) by
\[(S \setminus \hat{I}_1(\theta))^2 \setminus \hat{I}_1(\theta) \] (6.32)

where \(\Lambda \)-coefficients associated with the region \(S \).

The above properties of \(\tilde{\psi}^{(h)}_1, \tilde{\psi}^{(h)}_1 \) have obvious analogues in the Bernoulli model and are what we need to copy the argument already explained in the Bernoulli case to the Field theory of Euclidean fields; the only missing tool is an algorithm for estimating the error involved in the integration of the highest frequency field.

Such algorithm is provided by the following lemma of probability theory which allows to conclude that even the results of the integrations are as if the model was hierarchical. Let \(Z \) be the standard field with (6.1) as covariance operator and let:
\[U_{n_1}^{(h)}(k) = \sum_{p=1}^{n_1} \sum_{q=0}^{m_1} \int_{A_{n_1}^{(h)}} \cdots \int_{A_{n_p}^{(h)}} \cdots e^{\sum_{j=1}^{n_1} \cdots e^{\sum_{l=1}^{n_p} \cdots e^{\sum_{k=1}^{n_1} \cdots e^{\sum_{m_p} \cdots d\xi_1 \cdots d\xi_p}}} \] (6.33)

where the \(A \)'s are such that
\[\|A\| = \sup_{A \in \Lambda} \|A\| \] (6.34)

Let \(\lambda(A) \) be the c.h.f. of the event
\[\{ \|Z_1 - Z_n\| < B \} \] (6.35)

where \(\lambda(A) = \lambda(A) \) as above.

\[\|Z_1 - Z_n\| < B \|Z_1 - Z_n\| < B \] (6.36)

\[\lambda(A) = \lambda(A) \] (6.37)

\[\lambda(A) = \lambda(A) \] (6.38)

\[\lambda(A) = \lambda(A) \] (6.39)

\[\lambda(A) = \lambda(A) \] (6.40)

\[\lambda(A) = \lambda(A) \] (6.41)

\[\lambda(A) = \lambda(A) \] (6.42)

\[\lambda(A) = \lambda(A) \] (6.43)

\[\lambda(A) = \lambda(A) \] (6.44)

\[\lambda(A) = \lambda(A) \] (6.45)

\[\lambda(A) = \lambda(A) \] (6.46)
\[
\exp \left(\gamma_1 - \gamma_2 B_2^2 \right) \frac{R(t)}{\exp \left(\frac{t}{k_1} \tilde{E}^a(U_j k) \right)} = \exp \left(\sum_{k=1}^{\infty} \frac{t^k}{k!} \tilde{E}^a(U_j k) \right)
\]

\[
\int \frac{d^2 \phi}{2\pi} \exp \left(i\phi^a \right) \frac{1}{\pi} R(d\phi) \exp \left(\frac{t}{k_1} \tilde{E}^a(U_j k) \right)
\]

where

\[
\delta(B, A) = G(\|A\| B^2, \|A\| B^2) \exp \left(\frac{t}{k_1} \tilde{E}^a(U_j k) \right)
\]

\[
\epsilon'(B, A) = G'(\|A\| B^2, \|A\| B^2) \exp \left(\frac{t}{k_1} \tilde{E}^a(U_j k) \right)
\]

In the next section we show how the ultraviolet estimate follows from the above lemma.

7. The Upper and Lower Bounds

To find a lower bound we simply write

\[
\int d\phi \, \exp \left(\sum_{k=1}^{\infty} \frac{t^k}{k!} \tilde{E}^a(U_j k) \right) \exp \left(\frac{1}{k_1} \tilde{E}^a(U_j k) \right) \geq \sum_{k=1}^{\infty} \frac{t^k}{k!} \tilde{E}^a(U_j k)
\]

where \(\chi(D_0, \phi) = \phi \) is the characteristic function of the event \(D_0(\phi) = \phi \). Then

\[
\tilde{Z}_N = \prod_{\phi = 0}^{N-1} \chi(D_0(\phi)) \exp \left(\frac{1}{k_1} \tilde{E}^a(U_j k) \right)
\]

\[
\tilde{Z}_N = \prod_{\phi = 0}^{N-1} \chi(D_0(\phi)) \exp \left(\frac{1}{k_1} \tilde{E}^a(U_j k) \right)
\]

Since \(\tilde{Z}_N \) has the structure (6.31) after an appropriate change of scale and \(\exists \tilde{C} > 0 \) s.t.

\[
\|A\| \leq \tilde{C} B_{N-1} \gamma^{-N} e^{\lambda B_2^2} (7.3)
\]

we can apply the basic lemma to conclude

\[
\tilde{Z}_N \geq \exp \left(-\sum_{N=1}^{\infty} \frac{t^k}{k!} \tilde{E}^a(U_j k) \right) \exp \left(\frac{1}{k_1} \tilde{E}^a(U_j k) \right)
\]

and since \(\tilde{V}_N^{(N-1)} \) has again the structure (6.31) we can indefinitely apply the lemma to conclude that

\[
\tilde{Z}_N \geq \exp \left(-\sum_{N=1}^{\infty} \frac{t^k}{k!} \tilde{E}^a(U_j k) \right) \exp \left(\frac{1}{k_1} \tilde{E}^a(U_j k) \right)
\]

To find the upper bound we use first (6.28) to obtain

\[
\tilde{V}_N^{(N)} \leq \int e^{i\phi} P_N(d\phi) \leq \tilde{Z}_N \leq \int e^{i\phi} P_N(d\phi)
\]

Then we use the decomposition of \(\tilde{V}_N^{(N)} \)

\[
\tilde{V}_N^{(N)} = \sum_{\phi \in Q_N} \tilde{Z}_N \frac{B_N}{\tilde{Z}_N} \times Q_N \setminus R
\]

and write

\[
\tilde{Z}_N = \tilde{Z}_N \frac{B_N}{\tilde{Z}_N} \times Q_N \setminus R
\]

and using (6.29)

\[
\tilde{Z}_N \leq \tilde{Z}_N \frac{B_N}{\tilde{Z}_N} \times Q_N \setminus R
\]

Using now the basic lemma, after a change of scale (noticing that \(B_2^{(N)} \) has, vs, the appropriate form (6.31)) one finds by (6.34), (6.30):

\[
\tilde{Z}_N \leq \exp \left(-\sum_{N=1}^{\infty} \frac{t^k}{k!} \tilde{E}^a(U_j k) \right) \exp \left(\frac{1}{k_1} \tilde{E}^a(U_j k) \right)
\]

\[
\tilde{Z}_N \leq \exp \left(-\sum_{N=1}^{\infty} \frac{t^k}{k!} \tilde{E}^a(U_j k) \right) \exp \left(\frac{1}{k_1} \tilde{E}^a(U_j k) \right)
\]

and, by our construction, \(\tilde{Z}_N \) has the same structure as \(\tilde{Z}_N \) and the argument can be iterated, as long as \(h \geq B_2^2 \):

\[
\tilde{Z}_N \leq \tilde{Z}_N \frac{B_N}{\tilde{Z}_N} \times Q_N \setminus R
\]

where

\[
\tilde{Z}_N \leq \tilde{Z}_N \frac{B_N}{\tilde{Z}_N} \times Q_N \setminus R
\]

and

\[
\tilde{Z}_N \leq \tilde{Z}_N \frac{B_N}{\tilde{Z}_N} \times Q_N \setminus R
\]
Finally
\[Z_\lambda(h) \leq \exp \max_{\lambda} \sum_{h} (h_{\lambda} - 1). \] (7.13)

Hence
\[Z_\lambda(N) \leq \exp \left[\sum_{h \neq h_\lambda} (e(h) + \eta(h)) \right] \] (7.14)

where \(e(h) \) is an estimate for \(\sup \{ h_{\lambda} - 1 \} \). Since \(h_\lambda \geq 0 \), if \(\lambda \) is small enough, we see that one can take:
\[E_\lambda(\lambda) = \sum_{h \neq h_\lambda} (e(h) + \eta(h)) \] (7.15)

and this concludes the proof since it is easy to see that
\[\lim_{\lambda \to 0} \lambda^{-3} E_\lambda(\lambda) = 0. \] (7.16)

So it only remains to prove the basic lemma, last of the § 6.

8. Concluding Remarks

The proof of the lemma of § 6 is discussed in ref. [5] where it is reduced to a general support property of free fields roughly saying that the probability that a gaussian field, associated with an elliptic operator "with positive mass", is everywhere in a region \(I \) bounded by \(B \) times the square root of its covariance is bounded below by
\[\exp - C_1 \left(C_2 B^2 \right) |I| \]

\(\forall \ I \subset \mathbb{R}^d \), if \(C_1, C_2 \) are suitably chosen and \(B \) is larger than \(B^* \) (\(I \)-independent). This support property, very easy to prove in the hierarchical models using techniques of statistical mechanics or gaussian processes, is much harder in the continuum case. It is proven in ref. [4].

As it is well known the results presented here were all well known see the basic references quoted in [3], [5].

The method, however, seems to be somewhat different (although...
References

