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Abstract. We study, in the context of the Markov hyerarchical fields (d = 2, 3)
the role of the Markov property, of formal renormalization and of formal
positivity. We determine upper and lower bounds for the ground state energy
and discuss their relation with the perturbation theory series.

Introduction and Motivation

The basic property which allows to prove the rigorous validity of the perturbation
expansion in euclidean field theory of φ4 type ind = 2, 3 space-time dimensions, is
the "ultraviolet stability". The ultraviolet stability is the existence of a lower bound
to the minimum of the spectrum of the renormalized Hamiltonian. In this paper
we propose a model and a method of analysis which allows, in our opinion, to
clarify the statistical mechanical aspects of the ultraviolet stability theorem. To
motivate this model, and to illustrate the reasons which make it essentially as
difficult as the euclidean field theory, we pro'ceed as follows.

The euclidean field on Rd is a gaussian field with covariance

C = (l-DΓl (1)

where D is the Laplace operator on Rd. The ultraviolet divergences, originate from
the divergence of the kernel Cξtη of the operator C, as operator on L2(Rd\ as
\ξ — ?7|-»0, if d^2. This remark leads to the idea [1], of representing C as

C= X [(22N-D)-1-(22(N+1)-£>)-1] (2)
N=0

and, correspondingly, the field φ as,

φξ= £ φW (3)
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where φlN] are independent fields (with respect to the integers index N). If d = 2, 3,
φ[N] has a bounded co variance :

\ y<oo (4)

and it can be normalized by setting :

_~
(2v2(d~2)]V)1/2

It is easy to check that the field z(^N) is almost constant on a scale 2~N and that its
covariance decays exponentially fast on this same scale. We can imagine to
construct a good model of the above field φ admitting a representation of the type
Equations (3) and (5), where the random variables z(

ξ

N) have the following
properties :

i) they are "constant" over squares with scale 2~N.
ii) they decay exponentially fast on a scale 2~N.

A precise definition of such a field, is given in the next section and will be called
a Markov hierarchical field. Using this field as a "free field", we shall then study
the ^-interacting field. This problem, as it will turn out, presents exactly the same
difficulties and divergences as the euclidean field presents.

1. The Model: Definitions and Notations

The free hierarchical Markov field over Rd is described in terms of a family of
gaussian random variables indexed by the tesserae of a family (βf)£L0 °f
compatible pavements of Rd. Each tesserae AeQt is a cube with side size 2~i

i = 0, 1 . . . . The random variable associated to A will be denoted by ZΛ and the
variables ZΔ, AeQί9 ZΔ>, A'εQj are assumed independent if iή=j. Given z^O, the
distribution of the ZΔS for ΔeQfi is described by a gaussian Ising model with
nearest neighbour interaction with formal density proportional to

exp-y[ Σ* (z^-^+α2 Σ A (1.1)
z LΔ,Δ'eQt ΔeQί J

where ]Γ* runs over the pairs of nearest neighbour tesserae A,A'EQt and /?,α are

positive parameters fixed so that the expectation of z2

Δ is - α, β are fixed once for

all. 2

The free hierarchical Markov field with ultraviolet cut-off of length 2~N is
defined as the gaussian field over Rd:

where

γk = 2«-2*, fc = 0,l, . . . . (1.3)
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We define the normalized field with cut-off 2~N

(1.4)

which obeys the recursion relation

(N) _

-
where

ΓN= Σk 7/c/V'
o

We shall denote /N(-) the expectation with respect to the probability distribution
PN of the field (zA)AeQN. We shall define

PN=Y[Pi (1-6)
i = 0

The "interaction" is defined for d = 2,3 as

V™=-λl:(φψ^:dξ, Λ>0 (1.7)
/

where / is a bounded set exactly paved by Q0,

~N \n

(1.8)

and Hn is the n-ih Hermite polynomial (H0(x) = l, H1(x) = x, H2(x) = x2 — 1/2,
H4(x) = x4 — 3x2 + 3/4). The "renormalized interaction to order 3", will be defined

(1.9)

where

y423! Jί dξdn(C^:(φψ^ . (1.10)
^ / x /

y4!jJ^^fr (1.11)
^ I x j

> = - ( 2 ! ) 3 ί ί ί dξdηdζ(C[^nC^γ(CllNγ (1.12)
J> ! \Z/ / x / x /

and

). (1.13)
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The "ultraviolet problem" that we study in this paper, is the following : to prove
the existence of E+(λ)9 E_(λ\ such that, V/, N (\I\ is the volume of /):

i) expC-E.WI/D^fexp^P^dzJ^expCfi+CA)!/!] (1.14)

ii) HmE+(λ)/λ3 = Q. (1.15)
~

The technique we use would allow to treat more general problems and does not
distinguish the cases d = 2 and d = 3 (see §6).

The results i), ii) are obtained in this paper by using a technique which is
completely different from the one used in [2] and seems to simplify the classic
approach, [1, 3] to perturbation theory, at least for the class of models considered
here. In this paper we also give a complete derivation of an estimate for E+ , along
the lines which were only summarily sketched in [2].

2. E_(λ): Structure of the Bound

The estimate for E_(λ) will be obtained by studying and bounding

(2.1)

where χ(N) is a suitably chosen characteristic function. To describe χ(]V) and the
other characteristic functions which will appear in the following, we shall adopt
the convection that χ ("something") is the characteristic function of the events for
which the "something" is verified. We introduce the sequence

(2.2)

where B>0 will be chosen later, and iϊ AeQk

where d(ΔJ] is the distance between the sets A and /.

We than define

XW= Π Π fc
i = 0 AeQi

of course the sequence Bk has been chosen so that there exists a function e(λ) such
that (see Appendix A)

i) $χWpN(dz)^p{-e(λ)\I\} (2.5)

ii) ]ίmλ-ke(λ) = Q9 fc = 0,l , . . . . (2.6)

To describe the inductive procedure to find an expression for E_(λ) we need few
more definitions.
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The first is the definition of "cumulants" (or truncated expectations) of a family
of random variables xί... xs with respect to the probability measure P:

^T(xί9..., xs kl9..., ks) = [ ̂  ' *'g log j exp ft fl^p] ,
fc=oι'" S * (2J)

which makes sense in an obvious way if J \Xi\lP(dx) < oo, / = 0,1,... ί = 1,2,.... The
second definition gives a meaning to the symbol [_p(λ)~]t for any polynomial p(λ): if

PW = Σ ek^k we denote:

= ίkekλ
k. (2.8)

0

Finally we define the symbols F/° inductively for h = N, N- 1, ... , 1,0, - 1 :

y(N) = y(N)

1

(3)

It is not difficult to realize that F/~1)=0. The bound is obtained recursively by
proving that there exists G, ρ, ρ', ρ" such that

J χ(

exp{τGε(/c,A)|/|} (2.10)

where

(2.11)

where τ is some function which takes values on [— 1, + 1].
It will turn out from the proof that in (2.11) 4-1/2 can be changed in 4-ε

provided G is accordingly changed in some Gε.
The above (2.10) implies that one can take

. (2.12)
o

The proof of (2.10) will be given in §5.

3. E + (λ)

In this section we remove the field cut-off making explicit use of the positivity of
H4(x) for large values of x.

The basic idea is to represent the integral as a sum of integrals in each of which
the regions where the fields x(N\ x(N~1} are small, are specified. We then treat the
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integral over these fields as in the determination of the lower bound. The integral
over the remaining fields will be studied by using that either the field x(N) is large
and therefore V(N}<ζQ or ZΔ is large and, hence, has very small probability. The
possibility of a separate treatment of the field with support in complementary
regions relies on the Markov property of the fields {zA}AeQ. i = 0, 1, ____ To
implement the above program we introduce the following characteristic functions :

1CA = 1-*A (3-2)

and we shall use the decomposition of unity :

ι=Σ Π £ Π χ^Σxίαi* (3 3)
D
N
 AcD

N
 Acl\D

N
 D

N

AeQ
N
 AeQ

N

where the sum runs over the subsets of / which are exactly paved by QN and the
abbreviations of the second equality are, selfexplanatory.

Starting from the identity :

f exp V^PN(dz) = Σ f Ic

DNIDίi exp V^P^dz)
DN

we shall first prove that there is a k(λ) such that if N ̂  k(λ)

J exp V}^P^dz) £ Σ ί Xϊα** ̂ P V$N PN(dz) (3.4)

where V}$N is defined as in (1.9) by changing / into I\DN.
The second step, will be to prove that, for fe ̂  k(λ)

£( Σ ί*k ̂  .expF/^^P.^^ expGβ^A)!/! (3.5)
"

where Vfyk is defined recursively as in (2.9) replacing / by I\Dk, G is a suitably
chosen constant and ε(k,λ) is defined in (2.11). The above formula clearly imply
that one can take for E+(λ)

£+(A) = G Σ ε(M)+ sup maxl^w^Jχ^. (3.6)
Λ^fc(λ) βfc(A)-l I2 I

furthermore the function k(λ) can be taken identicaly zero for λ small enough
(hence the second term is absent for small λ). We now prove (3.4) and (3.5). The
proof is based on the following structural properties of Fjk) with J exactly paved by
Qk (see Appendix B) : there is a constant b > 0, such that if we write

Vf} = V(^j+Vf} (3.7)

where V^j is defined as in (1.7), the following relation holds:

-^')(l +Γk)
2H4(F)2dk\D\ (3.8)
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valid if DC J, D exactly paved by Qk and if
more if J is paved by QN,

^2 for zlcA ΔεQk. Further-

(3.9)

valid without exceptions, or, if J is paved by Qfc, k<N

^

(3.10)

if \x(*>\<Ffoτ all AC J, AeQk.
We shall define the above mentioned function k(λ) as the smallest integer k such
that:

0 (3.11)

where Bk<Bk is defined as

1/ΓA-ι-
B>

8(1 +fey
(3.12)

and to obtain Bk^2, we shall choose 5^12 [see Equation (2.2)]. The reason for
this choice of k(λ) will become clear soon. The first statement [Equation (3.4)]
follows immediately from Equations (3.3), (3.8), (3.9), (3.11).

To prove the second statement (Equation (3.5)) we introduce

(3.13)

if Rk is paved by Qk. Then,

^z)=Σ Σ
DkDk-ί

j exp FAl^(

Let

Than (3.8), (3.9), (3.11), (3.12), imply, for

[(3.14)] ̂  Σ Σ Σ ί y~DklDί Xok- £*.

(3.14)

(3.15)
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It is easily seen that Dk\Dk_1CRk, than we can do the sum on Dk and we get

[(3.14)] g Σ Σί^-.^.
Dfc-l Rk

•exp 2dk\RknI\[b(λ2

(3.17)

We can write :

ί *Dk- ,&*. j£JU

• J Pk(dz(e}\z(l))χDck _ fa exp ί̂ . ιυΛk (3.18)

where

d+RJ}

d+Rk)}

d+Rk = {ΔeQk\d(Δ,Rk)=Q,Δ(tRk} (3.20)

and Pk(dz(i}) denotes the distribution of the z(i) variables with respect to the
measure Pk and Pk(dz(e)\z(ί)) is the distribution of the variables z(e} conditioned, in
Pk, to given values of z(ί) (but it depends only on z£Rk because the Markov property
of the field).

We now use the inequality, valid if B > 8fc>*, where b* is defined in § 5 :

ί Pk(dzM\z(JXDt - JRS. exP ϊ/vk _ , u **

ΛuA.exp Ge(/c, A)|/| . (3.21)

This inequality will be proven, together with the similar one (2.10), used in the
theory of E_ in §5.

We use next the inequality

•exp

(3.22)

where

\8(l+/c)2

+ 4λHk(Bk)(ί +Γfc)
2]2-(4-d)k (3.23)
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and the first factor of μ(fc, λ) takes into account the replacement of Rk by Rk in the
last step, hence:

[(3.14)]g[ Σ Σ^ ̂ '̂ ί^Λ-^
L D f c - l Λ f c

•exp F/^/^z)] exp G|/|β(M) (3.24)

To perform the sum over Rk , we use the inequality

——
c|/|2 64<1+fe)4 2 (3.25)

where c>0 is a suitable constant. Inequality (3.25) is a property of the free field Pk

and it is an immediate consequence of Lemma 1 in Appendix C.

4. The Structure of Fjk)

To find what has to be proven to obtain the basic inequalities (2.11) and (3.25) we
have to use explicitely the structure of Vf\ This structure can be studied by
computing explicitely the function Vf\ The calculation straightforward, but
lengthy, and the definitive result is in the Appendix B here we describe only some
of the main features :

ίf'=Σ Σ Σ ̂
lp ΔieQki Λ,...,p n^...np

.e-κ2^(Δlt...ίΔp)χ(k)nί _ χ<*)«p + £ C Δ(N ', fc, J) (4.1)

ΛeQk
ΔCJ

where d(Δ^ ...,Ap) is the length of the smallest path connecting Aί...Ap,κisa
positive constant and An£"n]f (N, k, J\ CA(N,k,J), are suitable coefficients which
verify the estimates

sup |I"1-n/(]V,/c,J)|^l2-(4-d)k(l+Γfc)
2 (4.2)

J , N , p 1 '" P

sup |Q(AΓ,fc, J)\^Ά2-(4-v\l+Γk)
2 (4.2a)

J,N,J

for a suitable chosen constant A We shall now consider only the case in which x(k)

can be written as X(^ = (ZΔ + |//\xj" υ)/lA+^ with |xj " υ| ̂  J5fc_ 19 and we shall
regard Fj(/c) as a function of the (zΔ)ΔeQk which will take the following form

Σ Σ
1 AleQki: 1 . . .p n\...np

ΔiCJi:l...p n f > 0

(4.3)
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and the coefficients verify an estimate of the type (4.2) above with Ά replaced by

A = AB*_s (4.4)

where r > 0 is a constant. It is easy to realize that the estimates that we are seeking
can be deduced from the following general lemma on the theory of gaussian
processes. Let, for J exactly paved by Q0 :

u _ y y y j«ι...πp "ϊ^ ^Jii znp /45\
UJ- Lp L L ΛΔl...Δp

e ZΔί'"
ZΔp Γ*'^

1 ΔieQo nl>0

and call A = sup \An

A\ ' n/p \ .
We shall consider the z/s, AeQQ, as random variables with the conditional

distribution P0(dz\(zA)ΔeC\ (c.f.r. Eq. 3.18), hereafter abriged as P(dz\ where C is a
region paved by Q0 at distance b3 from J.

Lemma. Given an integer t ̂  0 and b>b*,let JQI and C be regions exactly paved by
<2o There exist constants S, ρ1? ρ2, ρ3, ρ4 depending only on £, D, d, κ such that:

O^expi
i

A t r & (46)

ana if C = 0

#τlu -^_ ( / ( s

where

Remark i. The truncated expectations are to be computed with respect to the

unconditional P0 measure.

Remark 2. In the applications we shall identify Q0 with Qk and identify J with
D

k kI\Dk(jRk and choose b= —^(1 + fc)"2. In this way we make use of the scale

invariance of the z-components of the free field.

Remark 3. The term in square brackets in (4.6) will be, in the application, a
Γ 3 J>T I

polynomial in λ of degree 9 (since t = 3) which we replace by ^fc — — (Hj k) [seeL i K! j(3)
(2.9)]. As it is implied by the structure of V(k} this replacement produces an error
which is of the same form of the one in (4.6).

Remark 4. The above lemma is very weak from the point of view of statistical
mechanics and becomes interesting only in the limit ^4->0 &->oo so that Abρ-^0
for all ρ > 0.
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5. Proof of the Basic Lemma

The proof of this lemma is quite simple but it is burdened by many technical
details. To help the reader, we give first a short sketch.

The goal is to evaluate (disregarding the characteristic functions which are the
origin of many technical difficulties) the integral JexpffjP^z) by the cumulant
formula. The a priori error would be however :

cost exp (max \Hjff +1 (5.1)

which is, of course, too large ("wrong |/| dependence").
If the Zj's were independent variables (rather than almost such) and if Hj were

"strictly local", i.e. Hj=^HA with HA depending only on ZΔ (rather than almost

such) we could write the integral as

ΠtfexpfWz)) (5.2)
A

and then apply to each factor the cumulant formula with an error :

ί+1 (5.3)

which is much better than (5.1) and is precisely what we want.
The fact that P does not factorize will be cured by collecting many zΓs into

large boxes Q still very small compared to /. Then we shall fix the values of the z^
variables for the A's near the boundaries of Π and call them z. The measure P,
conditioned to the fixed values z will then factorize "over the boxes D" because of
the Markov property of P. If the boxes are large the non locality of Hj will be
negligeable and we shall perform the conditional integral by the cumulant formula
to order t making an error of the type (5.3) with £ replaced by £ . The result will

_ A G
unfortunately depend on the conditions z. It will in fact have the form of a linear
combinations of terms of the form :

^J(z^,...,zjp;n1?...,^) (5.4)

where $? denotes the truncated expectation with respect to the conditioned
measure. Such expectations are polynomials in the z and differ very little from the
ones we want (i.e. the unconditional ones) if Al9...,Ap are far from the region

(J (<9 D) because the co variance of the z^'s decays exponentially and, far from

(J (d D), coincides with the unconditional covariance. This remark shows that the

above procedure has reduced the problem of proving the lemma to the special case
in which J is replaced by JnΓ1i where Γv is a region around (J (d D) with width of

the order of the maximum between the correlation length of the z^-covariance and
the range κ"1 of the "hamiltonian" Hj.

The location in space of the D's was however arbitrary. Hence we can apply
the same argument of #JnΓl by choosing the D's out of a pavement with boxes of
the same size of the former ones but shifted in location.
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In this way the initial problem is reduced to the case in which J is replaced by
(JnΓ1)nΓ2 where Γ2 are the new corridors. After (d+ΐ) steps one can obviously
manage by suitably choosing the successive displaced pavements so that
(JnΓ1)nΓ2n... r\Γd+1 =0 thereby reducing the proof of the lemma to the trivial
case Hj = Q.

The proof that we give here is different from the analogous result of [2] and
closer in spirit to the general methods of Statistical Mechanics [4, 5].

The technique discussed seems close to the one used in the theory of the critical
point of the almost gaussian Ising model [6].

Proof of the Lemma. Throughout the proof C, /, and J are fixed. Let R be a region
paved by Q0 and let

HR=ΣP Σ Σ
iCQo nt>0

--d(Δι...Δp)
(5.5)

t:l ...p i:l ...p

where the definitions of the ^4's is extended so that

An£"n% = 0 if some A^J, / = !,...,p.

Given two different regions R and S (paved by Q0) we define the interaction
between K and 5 as

R,S RuS R * S' IP W

We consider tesserae D paved by Q0 of side fo2 (for simplicity we assume fe1/2/4
integer, the modifications needed in the general case are trivial and will not be
considered). Let Qb be the corresponding pavement made up by the tesserae Q
For any Deβb we put

D=DuΓ2(D)uΓ1(D) (5.7)

where Γ2(Π) and Γ^D) are corridors of width ί>3/2, Γ^D) is adjacent to the
boundary of Π and Γ2(Π) is adjacent to the internal boundary of Γ^Π) (see
Fig. 1).

r 2 (π)

Fig.l


