Alcuni problemi ed idee della teoria ergodica.

GIOVANNI GALLAVOTTI (Roma) (*)

Mi propongo di illustrare, senza entrare in dettagli tecnici ed a partire da alcuni esempi elementari alcune nozioni e risultati recenti della teoria ergodica dei sistemi dinamici.

Ne dovrebbe risultare un quadro dal quale emergono alcuni specifici problemi aperti ed un contesto generale in cui si può pensare di risolverli o, almeno, di studiarli.

Sia S_t un flusso definito su uno spazio di Lebesgue $(\mathcal{K}, \mathcal{Q})$ e si supponga che la misura \mathcal{Q} sia invariante per S_t, $\forall t \in \mathbb{R}$, (ossia, $\forall t \in \mathbb{R}$, S_t è un automorfismo mod. 0 di $(\mathcal{K}, \mathcal{Q})$).

Una tale situazione si presenta in molte applicazioni. Per tutte scelgo i seguenti celebri esempi [1]

Esempio 1. Sistemi Hamiltoniani. Sia $H(P, Q)$ una funzione C^∞ su $\mathbb{R}^n \times \mathbb{R}^n$ e si supponga che l'insieme $\Sigma_1 = \{(P, Q)|H(P, Q) = 1\}$ sia una superficie compatta, regolare non vuota e tale che $|\text{grad } H| \neq 0$ su Σ_1.

Si consideri l'equazione differenziale

$$\dot{P} = -\frac{\partial H}{\partial Q},$$
$$\dot{Q} = \frac{\partial H}{\partial P},$$

con dato iniziale in Σ_1 (ed ovvio significato dei simboli).

È facile vedere che tale equazione ammette una soluzione globale per ogni dato iniziale in Σ_1.

Più precisamente esiste una famiglia di trasformazioni S_t, $S_t: \Sigma_1 \mapsto \Sigma_1$, $t \in \mathbb{R}$, tali che, se $(P(t), Q(t)) = S_t(P, Q)$, le funzioni $P(t)$,

(*) Cagliari, 24 settembre 1975.
\(q(t)\) sono differenziabili in \(t\) e risolvono l'equazione differenziale con dato iniziale \((P,q)\).

Sulla superficie regolare \(\Sigma\), si può introdurre la misura normalizzata
\[
\rho(d\sigma) = \frac{d\sigma}{|\text{grad } H|} \cdot \text{cost}
\]
ove \(d\sigma = \text{elemento di superficie su } \Sigma\).

È ben noto (teorema di Liouville) che \(\rho\) è invariante per la trasformazione \(S_t, \forall t \in R\).

Dunque la terna \((\Sigma, \rho, (S_t)_{t \in R})\) definisce un flusso.

ESEMPIO 2. – Sia \(Q = [0,1] \times [0,1]\) un quadrato e \(C_1, C_2, ..., C_n\) n ostacoli in \(Q\) ossia \(n\) regioni separate con chiusura mutuamente disgiunte e contenute nell'interno di \(Q\). Siano \(x = (q, \theta), q \in Q/C_1 \cup ... \cup C_n\) e \(0 < \theta < 2\pi\)

tre coordinate rappresentanti un punto materiale locato in \(q\) con velocità unitaria formante un angolo \(\theta\) con l'asse delle ascisse.

Gli ostacoli si suppongono con frontiera di classe \(C^\infty\) e strettamente convessi. La trasformazione \(S_t, t \in R\), è definita da \(S_t(q, \theta) = (q', \theta')\) ove \(q', \theta'\) è l'atto di moto in cui si viene a trovare all'istante \(t\) un punto materiale inizialmente \((q, \theta)\) dopo essersi sempre mosso di moto rettilineo uniforme ad eccezione degli istanti in cui sono avvenute collisioni con gli ostacoli ed in cui il punto è stato deviato con angolo di riflessione uguale a quello di incidenza e degli istanti di collisione con le pareti in cui il punto \(o\) è deviato con la stessa legge di riflessione degli ostacoli («biliardo riflettente»), oppure sospeso per riapparire immediatamente sul lato opposto del quadrato con velocità nella stessa direzione («biliardo periodico»).

Se \(K = \{\text{insieme degli atti moto}\}\) e su \(K\) si imagina definita la misura normalizzata:
\[
\rho(dq d\theta) = \frac{dq d\theta}{\text{cost}},
\]
si vede che \(S_t\), per ogni \(t\), è definito \(\rho\)-quasi ovunque e lascia \(\rho\) invariante e la terna \((K, \rho, (S_t)_{t \in R})\) definisce un flusso.

Ci si pone, in generale, il problema dello studio qualitativo delle proprietà del moto di un punto scelto a caso con distribuzione \(\rho\), sotto l'azione di un flusso.

Per evitare di restare in un ambito troppo astratto consideriamo un tipico problema di analisi qualitativa di interesse nelle applicazioni.

Consideriamo un insieme di ostacoli distribuiti sul piano \(R^2\) in modo periodico, ad esempio ripetendo periodicamente con periodo \(1\) il quadrato \(Q\) e gli ostacoli \(C_1, C_2, ..., C_n\), dell'esempio 2, nel piano. Supponiamo di scegliere a caso un punto materiale con atto di moto \((q, \theta)\), con \(q \in Q \setminus C_1 \cup C_2 \cup ... \cup C_n\), in base alla distribuzione di probabilità \(\rho(dq d\theta) = \text{const } dq d\theta\) e di farlo muovere nel piano con velocità uniforme e la solita legge di riflessione.

Sia \(S_t(q, \theta) = (q(t), \theta(t))\) l'atto di moto all'istante \(t\), se \((q, \theta)\) è l'atto di moto iniziale, (per inciso è chiaro che se \(S_t\) denota la trasformazione associata al biliardo periodico si avrà
\[
S_t(q, \theta) = (q(t) + \mathbf{x}(t), \theta(t))
\]
ove \(\mathbf{x}(t)\) è un vettore a componenti interi e che varia discontinuamente in \(t\).

Ci si domanda qual'è il tipo di moto di \(S_t(q, \theta)\) con \((q, \theta)\) scelto a caso come spiegato. Ad esempio, è importante sapere che tipo di diffusione il punto subisce nel suo moto: se normale o no. Matematicamente questo significa studiare il comportamento asintotico di
\[
\langle S^2(t) \rangle = \int (q(t) - q)^2 dq d\theta \text{ cost}
\]
ossia della distanza quadratica media rispetto alla posizione spaziale dell'atto di moto iniziale; e non è difficile vedere che
\[
\langle r^2(t) \rangle = 2 \int_0^t \int_0^t \cos(\theta(t) - \theta(t')) dq d\theta \text{ cost}
\]
e se, ad esempio, la funzione
\[
\gamma(t) = \int \cos(\theta(t) - \theta(t')) dq d\theta \text{ cost}
\]
è sommabile in \(t \to \infty\) si ha
\[
\lim_{t \to \infty} \frac{\langle r(t) \rangle}{t} = D = 2 \int \gamma(t) dt
\]
Se \(D > 0\) si dice che il sistema ha diffusione normale.
Poiché come osservato $\theta(t) = \theta'(t)$ vediamo che lo studio di

$$-\gamma(\tau) \int \{ \cos\theta(\tau) \cos\theta + \sin\theta(\tau) \sin\theta \} \frac{dq \, d\theta}{\cos t}$$

è un problema di teoria del biliardo periodico.

In generale, dato un flusso (K, q, S_t) è spesso necessario, nelle applicazioni, studiare l'andamento asintotico di espressioni del tipo:

$$(*) \quad \int q(dx) \, F(S, x) \, G(x) \, F, \, G \in L_\infty(q)$$

e alla luce della discussione dell'esempio precedente si vede bene l'interesse della seguente nozione:

DEFINIZIONE. - Un flusso (K, q, S_t) si dice mescolante per la famiglia \mathcal{F} di funzioni, $\mathcal{F} \subset L_\infty$, se $\forall F, \, G \in \mathcal{F}$

$$\lim_{t \to \infty} \int q(dx) \, F(S, x) \, G(x) = \left(\int F(x) \, q(dx) \right) \left(\int G(x) \, q(dx) \right).$$

Se $\mathcal{F} = L_\infty(q)$ il sistema si dice mescolante (*)

La ragione del nome si comprende immediatamente scegliendo F e G come funzioni caratteristiche di due insiemi misurabili A e B.

Abbiamo così incontrato esempi di due proprietà "qualitative": quella del mescolamento parziale o totale e quella della velocità di mescolamento ossia, assumendo che (K, q, S_t) sia mescolante per F e G, della velocità con cui gli integrali di mescolamento $(*)$ di F e G tendono al loro limite per $t \to \pm \infty$.

Quest'ultima questione è di particolare interesse per il problema della diffusione piana sopra descritto.

Il seguente teorema chiarisce un po' la nozione di mescolamento.

TEOREMA 1 (SINAI [2]). - Il biliardo riflettente o periodico è mescolante.

Per la teoria della diffusione sul biliardo tale teorema è scarsamente utile; ci dice infatti solo che $\lim_{t \to \infty} \gamma(t) = 0 \space$ ma non ci dà informazioni sul comportamento asintotico di $\gamma(t)$ e, quindi, di $(S^t(\theta))$ che è il problema dal quale abbiamo preso le mosse.

Recentemente si è arrivati a trovare dei metodi per lo studio delle velocità di mescolamento per certi flussi mescolanti e mi propongo ora di illustrarne alcuni aspetti; sebbene, per il momento, la prospettiva di applicarli al problema della diffusione fra ostacoli sia piuttosto remota e niente affatto chiara.

Tali tecniche sono notevolmente più sviluppate per i cosiddetti sistemi dinamici discreti. Tali sistemi dinamici sono definiti da una misura (K, q) di Lebesgue e da un suo automorfismo (mod 0), T: ad esempio, se (K, q, S_t) è un flusso e se si definisce $T = S_1$, allora il sistema (K, q, T) è un sistema dinamico discreto detto "flusso discretizzato" a $t = 1$.

La nozione di mescolamento si trasforma in modo naturale al caso dei sistemi discreti.

L'idea base per lo studio della velocità di mescolamento consiste in un cambiamento di coordinate che trasformi il sistema dinamico (K, q, T) in uno (K', q', T') ad esso isomorfo il quale però abbia traettorie "molto semplici" e, al tempo stesso, una misura q "molto semplice".

Per precisare, diremo che due sistemi dinamici discreti (K, q, T) e (K', q', T') sono isomorfi se esiste un isomorfismo (mod 0) delle misure (K, q) e (K', q') che commuta con l'azione di T e T' (mod 0).

Il sistema (K', q', T') si può allora interpretare in modo naturale come il sistema (K, q, T) visto in altre coordinate (qui il linguaggio è suggestivo ma vago; si noti che negli isomorfismi mod 0 fra spazi di Lebesgue si perdono le proprietà topologiche e quindi la locuzione "cambiamento di coordinate" va solo considerata come aiuto ad una visualizzazione intuitiva della nozione di isomorfismo).

Un metodo molto semplice per costruire sistemi isomorfi ad un dato sistema è il seguente: sia $3^* = (P_1, ..., P_m)$ una partizione finita e q-misurabile di K.

Ad ogni $x \in K$ si associa la "storia" di x su 3^* ossia la successione $(x_t)_{t=\infty}^{-\infty}$ definita dalla relazione

$$T^i x \in P_{y_i} \quad i = 0, \pm 1, ...$$

se per quasi tutti i punti x la successione $(x_t)_{t=\infty}^{-\infty}$ determina x la partizione si dirà "generatrice".

È interessante osservare che tutti i differomorfismi di varietà compatte Riemanniana di classe C^2 che lasciano invarianti una misura μ assolutamente continua rispetto all'elemento di volume e con derivata di Radon-Nikodym continua sono tali che il sistema dinamico (K, q, T) ammette una partizione generatrice finita (KRIEGER [3]).

Se, dunque, $K' = $ spazio delle successioni $(x_t)_{t=\infty}^{-\infty}$, $x_t = 1, 2, ..., m$, e se

$$E_{(y_1, ..., y_m)} = \{ (y_t)_{t=\infty}^{-\infty} | y_t = x_t, x_1 = y_1, x_2 = y_2, ..., y_m = x_m \}$$
e se si pone
\[q'(E_{x_1, ..., x_l}) = q(T^{-i_1}P_{x_1} \cap T^{-i_2}P_{x_2} \cap ... \cap T^{-i_l}P_{x_l}) \]

è facile vedere [4] che \(q' \) si estende ad una misura sulla \(\sigma \)-algebra generata dai «cilindri» cioè dagli insiemi del tipo appena introdotto e che il sistema dinamico «simbolico» \((K', q', T')\) è isomorfo a \((K, q, T)\): l'isomorfismo è stabilito dalla corrispondenza \((x \in K) \leftrightarrow (\text{storia di } x)\) definita (mod 0) se \(P \) è generatrice (Rothein [5]).

Supponiamo ora che esista un semiemplice cambiamento di coordinate, del tipo ora descritto, tale che la misura \(q' \) sia anch'essa semplice; ad esempio, sia una misura di Bernoulli e cioè tale che esistano \(p(1), ..., p(m) \) e

\[q'(E_{x_1, ..., x_l}) = \prod_{i=1}^{l} p(x_i) \]

(proprietà di indipendenza, o di Bernoulles). Sarebbe allora molto facile discutere le velocità di mescolamento per il sistema in questione: in vero se una funzione \(F: K \rightarrow R \) è, espressa nelle coordinate di \(K \), tale che esiste un \(N > 0 \) per cui

\[F(x) = q(x_{-N}, x_{-N+1}, ..., x_0, x_1, ..., x_N) \]

ove \((x_i)^\infty_{-\infty}\) è la storia di \(x \) e \(q \) è una funzione su \(R^{2N+1} \), è allora chiaro che

\[\int_{K} F(T^m_x) F(x) q(dx) = \left(\int_{K} F(x) q(dx) \right)^2 \]

non appena \(M > 2N + 1 \) e, quindi, il problema del calcolo delle velocità di mescolamento per una funzione \(F: K \rightarrow R \), misurabile, diviene essenzialmente quello di vedere quanto \(F(x) \) dipende dalla storia lontana di \(x \) al variare di \(x \) in \(K \). Se la corrispondenza tra punti e storie relative è semplificata allora c'è speranza di risolvere anche questo problema almeno per certe funzioni \(F \).

Ovviamente non è affatto detto che un dato sistema dinamico sia isomorfo ad un sistema dinamico simbolico con misura di Bernoulle.

Per molti sistemi di interesse nelle applicazioni, però, grazie ai fondamentali risultati di Sinai e Ornstein [6], sulla teoria dell'isomorfismo fra sistemi dinamici è stato possibile dimostrare l'esistenza di partizioni di Bernoulle generatrici.

Fra questi conviene ricordare il biliardo discretizzato ed il flusso geodetico discretizzato su varietà Riemanniane a curvatura negativa e di classe \(C^0 \) almeno (di cui il biliardo è, in un certo senso, un caso limite), [1, 6, 7].

Però in tutti questi casi, dalle dimostrazioni, emerge il sospetto che le partizioni di Bernoulle siano lungi dall'essere semplici geometricamente: ad esempio, è probabile, che, nel caso del biliardo, gli atomi delle partizioni di Bernoulle siano densi gli uni negli altri! Questo significa che può essere difficile studiare funzioni tipo \(\cos \) o \(\sin \) in termini della storia di un punto su una partizione di Bernoulle e c'è poca speranza di ottenere informazioni concrete su quantità interessanti come \(\gamma(t) \) per questa via.

La situazione per i flussi geodetici o per i sistemi di Anosov (ad esempio analoghi che non definirò in questa sede) (c.f.r. [1], pag. 53) è del tutto analoga [6].

Si può però rinunciare alla costruzione di partizioni di Bernoulle e costruire partizioni che siano più regolari al prezzo di ottenere una misura, definita sulle successioni che rappresentano le storie dei punti, che non sia banale come le misure di Bernoulle, ma che resti "trattabile" e al tempo stesso divenga trattabile il problema dello studio della dipendenza di funzioni interessanti rispetto ad eventi della storia lontana.

In effetti, nel caso dei sistemi di Anosov, è possibile costruire partizioni tali che la misura indotta sulle storie associate alla corrispondenza punto-\(\leftrightarrow \) storia è tale che eventi con indice di storia molto diverso siano quasi indipendenti e, al tempo stesso, per molte funzioni, ad esempio per le funzioni holomorfe sulla varietà, è possibile valutare il tipo di dipendenza da coordinate con indice di storia grande: si ottiene così il seguente teorema [8]:

TEOREMA 2. – La velocità di mescolamento per le funzioni holomorfe definite su una varietà compatta è esponenziale in qualsiasi sistema dinamico di Anosov \((K, q, T)\) (discreto) su tale varietà.

L'interesse di questo notevole teorema ne trascende il risultato: il sistema dinamico simbolico \((K', q', T')\) che si costruisce nella dimostrazione di questo teorema è infatti un sistema dinamico simbolico che appartiene ad una classe molto vasta di sistemi dinamici che è ben nota in teoria dei processi stocastici ed in meccanica statistica. Anzi è proprio utilizzando risultati e tecniche della Meccanica statistica e del Calcolo delle probabilità che è stato possibile analizzare e ritenere "semplice" la misura \((K', q')\).
Senza dunque insistere sulla dimostrazione dei teoremi 1, 2, 3 è interessante passare in rassegna alcuni aspetti della teoria dei processi stocastici e della Meccanica statistica che giocano in modo essenziale nella dimostrazione dei teoremi sopra enunciati.

Ricordando la definizione di un processo stocastico: sia K lo spazio delle successive $x = (x_i)_{i=-\infty}^{+\infty}$, $x_i = 0, 1, 2, \ldots, m-1$ riguardato come spazio topologico prodotto $K = \prod_{i=-\infty}^{+\infty} [0, 1, \ldots, m-1]$ con la topologia prodotto delle topologie discrete su ciascun fattore $[0, 1, \ldots, m-1]$; un "processo stocastico a m stati e tempo discreto" è una misura di probabilità di Lebesgue \mathcal{Q} definita sui Boreliani di K e invariante per la trasformazione, "traslazione":

$$T: (x_i)_{i=-\infty}^{+\infty} \rightarrow (x'_i)_{i=-\infty}^{+\infty}, \quad x'_i = x_{i+1}$$

Se si introduce la probabilità

$$f_i((x_i)_{i=-\infty}^{+\infty}) = p_i(x_0|x_1, x_2, \ldots) \in L_1(\mathcal{Q})$$

che un punto $y = (y_i)_{i=-\infty}^{+\infty}$ sceglie a caso fra quelli tali che $y_i = x_i$, $i \neq \ell$, sia tale che $y_0 = x_0$, si dirà che il processo stocastico \mathcal{Q} è non singolare se la funzione f ha, in $L_1(\mathcal{Q})$, un rappresentante continuo e mai nullo definito su K.

Per semplicità mi limiterò, nel seguito, a processi stocastici in cui $m = 2$ (cioè $x_i = 0, 1$).

Vale allora un interessante teorema parte di un teorema generale di struttura che, per brevità, non riporterò (cfr. [9]):

THEOREMA 3. – Se Φ è una funzione definita sui sottoinsiemi finiti (i_1, \ldots, i_n) dell'insieme degli interi e tale che

\begin{enumerate}
 \item $\Phi(i_1, \ldots, i_n) = \Phi(i_1 + 1, \ldots, i_n + 1)$, \quad \forall \ i \ \text{intero},$
 \item $\|\Phi\| = \sum_{k=0}^{\infty} \sum_{i_1 < \cdots < i_k} |\Phi(0, i_1, \ldots, i_k)| < + \infty$
 \item $f(i_1, \ldots, i_n) = \frac{\exp x_0 \sum_{k=0}^{\infty} \sum_{i_1 < \cdots < i_k} \Phi(0, i_1, \ldots, i_k)x_{i_1} \cdots x_{i_k}}{\text{(costante di normalizzazione)}}$
\end{enumerate}

esiste almeno un processo stocastico \mathcal{Q} le cui possibilità condizionali (***) siano date dalla ii).
significato che ha nel Calcolo delle probabilità e soprattutto nella Meccanica statistica.

In proposito i fisici teorici hanno sviluppato ricchissime e sorprendenti teorie che prevedono una gran quantità di risultati che, sebbene per il matematico siano solo congetture, promettono attraverso il loro studio sistematico importanti progressi delle tecniche e delle idee relative alla teoria matematica dei processi stocastici.

Per dare un'idea della complessità della situazione generale e del grado di raffinatezza a cui può giungere la teoria degli stati di Gibbs citata, per finire, il seguente teorema.

Teorema 6. - Se $\Phi(i,j) = -\beta |i-j|^{-\alpha}$, $1 < \alpha < 2$ e se $\Phi(i) = 2\beta \sum_{k=1}^{\infty} 1/k^\alpha$, $\Phi(i,j,k) = 0$, $\Phi(i,j,k,l) = 0$ etc.

Allora per β abbastanza grande esistono due stati di Gibbs, [9] almeno, con potenziale Φ ma se β è abbastanza piccolo o se $\Phi(i) = 2\beta \sum_{k=1}^{\infty} 1/k^\alpha$ lo stato di Gibbs è unico e le funzioni cilindriche mescolano, in questo caso, con velocità sommabile [12].

Concludo così, questa rassegna rapida di problemi e metodi comuni alla teoria ergodica, alla teoria qualitativa dei moti su varietà compatte, alla meccanica statistica di sistemi discreti e alla teoria delle probabilità.

Tale rassegna non ha alcuna pretesa di completezza neppure quanto riguarda la vastità dei campi a cui tali tecniche si applicano. Io in particolare tralasciato di discutere le applicazioni alla descrizione degli attrattori in sistemi dinamici generati dai campi vettoriali definiti su varietà riemanniane e che hanno interesse per la teoria delle fluidodinamica [8,11].

BIBLIOGRAFIA