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Synopsis 

We examine several definitions of surface tension between oppositely magnetised phases in 
the two-dimensional Ising model. With nearest-neighbour attractive interactions, we prove that 
at low temperatures (large B) all the definitions agree with that of Onsager. 

1. Introduction. For the two-dimensional Ising model with nearest-neighbour 
interactions, Onsage?) defined and calculated exactly a surface tension. This was 
later shown by Fisher and Ferdinand5) to be related to the incremental free energy 
of a lattice with a vertical ladder of perturbed horizontal bonds. Unfortunately 
the generalization of this approach to the situation with non-nearest neighbour 
interactions is not straightforward; neither is it obviously related to the more 
general definition based on a detailed discussion of the phase-separation pheno- 
menon; this is described in ref. 1. Later in this paper we shall evaluate the surface 
tension according to yet another definition, referred to in ref. 1 as grand canonical. 
We shall enlarge upon these definitions in subsequent sections; at this point we 
only wish to stress that considerably less detailed information is required to 
evaluate the surface tension for these macroscopic definitions. Therefore it is 
desirable to explore their equivalence, if any, to the microscopic definition in 
terms of phase separation; this is the aim of the present paper. 

In the following sections, we review the results of refs. 1 and 3 and outline the 
definitions of surface tension to which we alluded above. We then prove that, 
for the two-dimensional lattice with nearest-neighbour interactions, the Onsager 
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definition coincides with the microscopic definition in ref. 1 for the region in ,9 
where the latter has been shown to make sense. Finally, we evaluate the grand- 
canonical surface tension, and reflect on its equality with the Onsager value. 

2. Notation andprevious results. Let Q be a lattice with N columns and (H + 2) 
rows. The opposite ends of each row are joined giving a cylinder with base 
length N. At each site of 9 there is located a classical spin pi with values cri = + 1. 
The Ising model with nearest-neighbour interactions of strength J is then specified 
by assigning an energy E(X) to each spin configuration X as follows: 

E(X) = J x (total number of bonds in Q) 

- 25 x (number of bonds with opposite spins at their extremes). 

(2.1) 

We shall be interested in constrained situations where the spins on the bases 
have specified values; in particular A4 CX,y’(Q) denotes the set of configurations X 
for which spins on the upper base have value x while those on the lower base have 
value y ; x, y = + 1. A set of lines is associated with each configuration by drawing 
a unit segment symmetrically perpendicular to the midpoint of any bond which 
has opposite spins at its extremes. One realises that the set of lines thus obtained 
on the dual lattice can be split, because of the selected boundary conditions, into 
several disjoint closed contours yl, . . . , y,, , which are self-avoiding in a sense made 
precise in ref. 1. Formula (2.1) can be written immediately in terms of the lengths 
]?/j] ofthecontoursyj,j = 1, . . . . IZ, associated with a given spin configuration X: 

E(x) = JP IQ/ - 2Jf Irjl, 
1 

(2.2) 

where IQ] p is the total number of bonds in the lattice, IQ] being its area. 
There are important restrictions on the contour configurations I’ = {rl, . . . , y.} 

appropriate for the ensemble it4 (X,y)(Q): if x = y there must be an even number 
of contours which wind round the cylinder, whereas if x = -y there must be an 
odd number of such contours. With these stipulations, there is a 1: 1 correspondence 
between sets of contours r on the dual lattice and the spin configurations 
X E ,(**“(Q) : w e shall refer to X and r(X) in an interchangeable way. 

In ref. 1, the following results were obtained [we take J = - 4 in (2.2)] : 

2.1. Phase separation. Let M +- (Q, m) be the set of configurations in 
M+-(Q) with fixed magnetization IQ] m, where 

m = am* + (1 - a)(-m*) = (2a - l)m*, O<Ly<l, (2.3) 
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m* being the spontaneous magnetization. Let the subset @i - (Q, m) be defined 
by the additional restrictions : 

1) There is one and only one contour il which winds round the cylinder. Its length 
satisfies the restriction 

111 < N(1 + GB-‘), (2.4) 

for a suitable G > 0. 
2) Area fluctuations: let Q, be the region above 1; then 

II-QAI - 01 IQII < 49 IQl’, 

IIQ - Qnl - (1 - @I IQII G W) lQIP, $<p<l. (2.5) 

43 = cl e -Q for suitable constants cl, cZ > 0. 
3) Magnetization fluctuations: let m* be the average magnetizations above and 
below the contour. Then 

Im+ IQA - m*a IQll G k(p) lQlp, 

Im- IQ - Q,l + m* (1 - a) lQll G k(p) lQlp. 
(2.6) 

4) Excluding 1, the contours satisfy the length restriction 

IYI G co hs PI, (2.7) 

with a few exceptions; the total length of these contours does not exceed Np-l. 
For /? sufficiently large, it was proved in ref. 1 that 

lim z Cat - CQ2 4, B> 
N-m z@f+-(L?,m),#?) 

= 1 

’ (2.8) 

where Z (M, /?) is the partition function for the ensemble M. This equation shows 
that we may regard the lattice as two seas of spins having well defined but opposite 
magnetizations separated by a fairly well defined interface. 

2.2. Surface tension. The surface tension z associated with the interface 
described above is defined by 

-c = lim -!- log ZW+- (Q, m),B> 
N-+m N Z(M++ (Q,m*),B) ’ 

(2.9) 

For /I sufficiently large, this limit was shown in (1) to exist and to be independent 
of m when H = [N’], 6 > 1. It is then independent of 6 as well. Formula (2.9) 
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was analysed by successively restricting the ensembles M in the partition functions. 

Thus we have 

sz C e-@“’ 2 (44: + (GA), /?) Z (M; - (f2 - Q,), /3), 
I 

(2.10) 

where the ensembles M: *(.Q) have no magnetization restriction, and no contour 

which will wind round the cylinder. 

The sum over i is restricted by the bound 

0 G IQ,1 - Ls: IQ < N, (2.11) 

as well as by (2.4). Analogously, the partition function Z (AI+ + (Q, m”), @ in 

(2.9) may also be replaced by Z (MO’+ (Q), /3). The symbol = means that the 

two sides of (2.10) are identical up to a factor which behaves like exp (No (N)). 

2.3. Virial expansion. Given n(> 1) closed self-avoiding contours, not 

necessarily disjoint, nor even different, none of which winds round the cylinder 9 

one can define a function vT (y, ... 7”) on the sets of contours r = {rl, . . . , yn} 

such that 

1) pj’(IJ = 0 if I’is disconnected, that is, if r can be partitioned into two or more 

subsets such that every y in one is compatible with every y in the other. 

2) qT(IJ is translationally invariant; it is not lattice dependent unless I’ winds 

round the cylinder. 

3) We have the bounds 

(2.12) 

I~xlqT(r)l < Fe-” (4 e-‘s)‘x-y’t-, F > 0, (2.13) 

T3Y 

where r 3 x implies that x E Q is contained in some yi E r. 

4) The functions pT(r) are such that the following virial expansion is valid: 

(2.14) 

for any subregion 8 c r. Then 

Z (M + - (Q, m), /I) E Z (ML +(Q), /3) 4 e-B’n’ --pn(‘). 

where 

~~(1) = & q*(r). 

rcR 

(2.15) 

(2.16) 
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The symbol r i iz means r intercepts the contour il. Finally, by using (2.12) it 
follows that 

t =frna f log C (e-“‘“’ -P(A)), 
-? i 

where the sum satisfies (2.11) and (2.4), and ,u(A) is defined by 

(2.17) 

(2.18) 

independent of the height of 9, and thus of 6. 

3. The Onsager definition. Let 9 be a cylinder with base N and height H. 
Suppose N is even and H is odd. Let the bases of the cylinder be joined by 
additional bonds so that Sz becomes a torus. We define columns of spins on the 
torus to be lines of spins parallel to the original cylinder axis. Rows are defined 
mutatis mutandis. The sites on the torus are labelled by the ordered pair (r, s); 
r and s are the row and column indices, respectively. The spins have an interaction 
energy similar to (2.1) but the interaction in rows and columns is not necessarily 
the same. 

We shall consider the case J(v) = J(h) = J > 0 which describes the anti- 
ferromagnet. The associated partition function is denoted by 2 (Q, ,!I, a). 

There are two related energy assignments which are of interest. Let every spin 
be reversed on alternant columns. Since N is even, we obtain a lattice with ferro- 
magnetic interactions within rows, but antiferromagnetic interaction within 
columns. Such a scheme was considered by 0nsager2). Let the associated partition 
function be denoted by 2 (Q, b&z); then evidently 

Suppose now a further spin reversal is applied to every other row on the lattice. 
Then the lattice obtained thereby has J = J(h) < 0 and J = J(v) < 0 for all 
rows of vertical bonds, except one which has bond strengths -J, because H is 
odd. Let the associated partition function be Zx (52, p,fl. Then we have 

Zx (Q, B, f) = Z (Q, B, $3. (3.3) 

This relationship was tirst pointed out by Fisher and Ferdinand5). 
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The Onsager definition of the surface tension z is 

t = lim J_. log z WY BY f4 
N-+m N Z(Qn,PLf) ’ 

(3.4) 

where Z (Q, ,!?,f) is the partition function for the purely ferromagnetic case with 

J(h) = J(U) = J < 0. The limit is taken so that His the least odd integer greater 

than N’ for 6 > 1. We now establish the equivalence of (3.4) and (2.17) using a 

contour technique. 

4. Equivalence of dejinitions. In order to discuss Z (L?, /3, a) introduced in the 

previous section, we shall represent a spin configuration Xin Q by a set of contours 

constructed in a different way: draw a unit line segment perpendicular to each 

bond of Q which has equal spins at its extremes4). Clearly the set of lines on the 

dual lattice obtained in this way splits into a set of closed, disjoint, self-avoiding 

contours yl, . . . . yn, and the energy of the corresponding configuration X can be 

written 

W’) = -pJ IQ1 + 2JC lyil, (4.1) 

by analogy with (2.2). The set of contours is subject to a restriction: there must 

be an odd number of contours which wind round the torus in the row direction. 

Such sets of contours are termed compatible. The correspondence between them 

and the set of spin configurations is 1: 2. If J = ++ the partition function 

Z (Q, p, a) is given by 

rc.Q 
exp (-P T lYjl)* 

r allowed 

(4.2) 

In the treatment of Z (Q, p,f) we use the same contour construction as in ref. 1 

and section 2 of this paper. The energy is given by 

E(X) =PJIQI - 2JC lyil, (4.3) 

but, because of the toroidal boundary conditions, the correspondence between 

allowed configurations of spins and the contours is 2 : 1. There must be an even 

number of contours which wind round the cylinder. If J = -3, then 

z (a B, f) = 2 c 
r-co 

exp (-PF IYA). (4.4) 

By the following an argument similar to that used in Peierls’s proof of the 

occurrence of a phase transition for /I sufficiently largelo) it is easy to see that 
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the contribution to 2 (52, p, a) from configurations with more than one contour 
winding round D and to Z (!2, j?,f) from configurations having any such contour 
at all is negligible. Consider Z(Q, p,f), e.g., and call the contribution from the 
configurations without such “long” contours Z,, (l2, @,f). Then 

where A, and 1, both wind round D in the same direction. The last sum in the 
numerator is contained in that of the denominator, so their ratio is I 1 and: 

eq. (4.5) < 1 e-8(1111+11~1) < 1 C 
J.l.4 PER rl3P 

IdI BN 

= [NH/(1 - 3 e-8)]2 (3 e-B)2N 3 

2 

1 
(4.6) 

using the estimate 3’ for the number of contours of length 1 which pass through 
a given point p. For p large 1 - Z,/Z hence goes exponentially to zero as N + co. 
The contribution Z. (Q, ,t?, a) to Z (Q, p, a) from configurations with only one 
“long” contour is estimated similarly. We have thus the following relations: 

z (Q, B,.f> = zo (Q, f%_f> = 2 x0 
Yl...Y.=Q 

exp (-IT Ivil), 

where 1, but none of y1 , . . . , yn winds round Q and no yI intercepts il. 
On the torus Q a similar virial expansion as on a cylinder is valid in the ensemble 

of contours not winding round Q, so that we have: 

Z. (Q, p, a) = 2 C e-81”1 exp C p=(r), (4.9) 
1. rcn\rl 

Z. W, PA = 2 exp C vTV). 
rcn 

(4.10) 

[The m’(I’) appropriate for a torus are defined also for other configurations than 
those on a cylinder, but for a r that can be located both on a torus and on a 
cylinder y=(r) is the same in both cases, see ref. 11. We obtain as in (2.15): 

z (Q, B, 4 w zo (Q, A 4 ml - irnv.) 

z VA A f) zo (Q, BA 
=Te- , (4.11) 
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where 

(Here we use the fact that v=(r) = 0 if r is “disconnected”.) In (4.11) we can 
impose the length restriction (2.4) without affecting z. This follows from the 
estimate ]j&(A)] < ]A] e-@ . implied by (2.12) which allows us to conclude that 

G c exp (-/I ]A] + 2 Iii] e-@ + Nj3) 
IAI2N(l+G@-‘) 

< NHeNB f [3 exp (-/3 + 2 e-@)I’ 
I=N(l+Gp-‘) 

< const NH {3*+GBm’ exp [-G + (1 + G/F’) 2 e-BC])N, (4.13) 

which goes exponentially to zero as N + co for all large enough B if G is not too 
small. [G in (2.4) was chosen in ref. 1 to fulfil this requirement.] 

Both in (4.11) and (2.17) we can restrict the summation to one representative 
from each congruence class under translation along the cylinder axis without 
affecting t. The difference between ,&(A) in (4.12) and ~~(2) in (2.18) is of the 
order at most e-aNv3 for some LX + 0, because by (2.13) this is a bound on the 
contribution from the configurations which appear in one of the sums but not 
the other. To see this let A1 and A2 be congruent to il at distance +Nfrom it (N < H). 

Then both m(A) and ,&(A) differ from the corresponding sum with r restricted 
not to intercept 1, u A, by at most &iA, il,ul, ]pl’(r)], which is bounded as 
indicated using (2.13). Hence (3.4) and (2.9) are identical for sufficiently large 
values of 8. 

5. Grand canonical surface tension. In ref. 1, a grand-canonical definition of 
the surface tension was proposed. This can be formulated as follows: let Q be a 
cylinder with base N and height (H + 2) = [Nd], 6 > 1. Using the notation of 
section 2, consider the grand-canonical partition functions 2 (M + +(Q), p) and 
Z (M + - (.f&, /I) and define 

t’(p) = lim J- log z (M + - (Q), 8) 
N-rm N z w+ +m, /a > ’ 

(5.1) 

where the limit is to be taken with H = [N’], 6 > 1 as in (3.4). The physical argu- 
ments given in ref. 1 and reviewed in section 2 of this paper lead one to conclude 
that r’(B) is perhaps another viable definition of surface tension. It has an ex- 
pression analogous to (4.9) in terms of the contour expansion. We are unable to 
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demonstrate in general the coincidence of (2.9) and (5.1). Neither is the existence 
of (5.1) proved directly. However, for nearest-neighbour interactions we can 
compute z’(B) exactly. Its value is obtained in the appendix: 

z’(p) = -p - log tanh (J&), (5.2) 

which is the same as Onsager’s value2). In the computation it is necessary to 
stipulate that H = [N’], 6 > 1. The physical meaning of such a condition is quite 
simple: the ensemble M+ -(Q) is the union of the ensembles of configurations 
with given average magnetization m. The configurations with m > m* have 
vanishing probability in the limit, but those for which m E [-m*, m*] have 
comparable probabilities. If m E (-m*, m*) then a typical configuration 
X E M+ - (a, m) splits into two’ oppositely magnetised phases separated by a line 
1 as in section 2. If m = (2a - 1) m*, then iz is located at a mean distance LXH 
from the upper base, and has a width of the order of N [see (2.4)]. Hence if 
H = [A@] this line can be made arbitrarily distant from the bases of Q for 
0 < LY -K 1 merely by choosing N large enough; thus the effect of interference 
between the interface and the bases is negligible. This is not so for those “few” 
configurations with m = f m*. Thus it is not clear from this point of view why 
z’(b) and z(p) should be equal, and we are unable to control the necessary estimates 
to prove this equality in general by direct considerations. 

Suppose a spin reversal is applied to s adjacent rows of spins, beginning at the 
lower base. We then have a ferromagnetic lattice with + spins on each base and 
a row of reversed vertical bonds at a height s; the incremental free energy is 
independent of s. We can introduce a contour description as follows: on the line 
of reversed bonds, draw a unit perpendicular segment on the dual lattice wherever 
there are equal spins at the extremes. For the other bonds we adhere to the usual 
rule. With (+, +) bases, there must be an odd number of contours which wind 
round the cylinder. With free ends, the surface tension is zero (as may be seen 
along the lines indicated in appendix A). r’ can hence also be defined as the limit 
of the incremental free energy for this configuration divided by N. 

Let a column X of reversed horizontal bonds of length 1 be inserted into a large 
lattice II. Let the thermodynamic limit In] + co be taken so that d (X, &I) + co. 
Then the incremental free energy FX(I) exists in this limit, and may be seen to be 
independent of the boundary conditions on Q “). For this system Fisher and 
Ferdinand5) defined a surface tension r” by 

7” = lim [Fx(I)/Z], (5.3) 
I-trn 

which they evaluated, obtaining the Onsager value. The relation of their result to 
the grand-canonical definition may be understood readily by appealing to the 
transfer-matrix formalism (see appendix A). Finally we mention the interesting 



82 D.B. ABRAHAM, G. GALLAVOTTI AND A. MARTIN-L6F 

relation (known, at least, to Fisher and Ferdinand5p9) between the grand-canonical 
surface tension and the inverse spin-spin correlation length for the high temper- 
ature region. Let contours be drawn for the column of reversed horizontal bonds 
in the Fisher-Ferdinand approach according to the following rules: 1) If there 
are identical spins on opposite ends of a reversed bond, let a unit segment be 
drawn in a symmetrical way perpendicular to the mid point of the bond. 2) For 
the remaining bonds lines are drawn in the same way on the dual lattice if and 
only if the associated spins are opposite in sign. 

In this way one obtains a set of contours with the restriction that at any point 
on the dual lattice 0,2 or 4 bonds may meet, except at the end points of the row of 
reversed bonds from which either one or three bonds may emanate. Thus the 
ends of one of the long contours are tied down. The energy associated with the 
contour is given once again by (2.2). On the other hand the well-known tanh K 
(high temperature) expansion for the pair correlation functions9) leads to an 
exactly similar contour description, except that the edge weight should be tanh K 
rather than emZK. Thus the surface tension is obtained from the high-temperature 
inverse correlation length by merely interchanging K and K* [see (A.2)]. 

Acknowledgement. We thank Professor M.E.Fisher for a clarifying dis- 
cussion. 

APPENDIX A 

1. Grand-canonical surface tension. By using the methods reviewed in ref, 6, 
the surface tension -c’(p) defined in (5.1) can be expressed in terms of the matrices 
V, , V2 for transfer parallel to the cylinder axis, which are given by 

V, = (ZsinhZK,)‘“exp(-K:$o;), 

V2 = exp(K,fG4+l), 

where 

K2 = W(h), K1 = BJ(4, tanh Kl = e--3K1*. 

Let 1 L- ) be eigenstates 

o; I*> = * I*> 

Then if Q is a cylinder 

2 (M + -0, Bj 

z(M++(Qj,Bj 

of the {CT;} defined by 

for j= l,...,N. 

with base N and height H, 

(+I P-l I-) . , I I 

= (+I VH-1I+) ’ 

(A.11 

(A.3 

(A.3j 

(A. 4) 
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(A.% 

As shown in refs. 6 and 7, V may be written in the diagonal form 

V = (2 sinh 2K,)‘N (Q+V+ + Q_ V_), 

where 

v(*) = exP -3 1 &)(2G:G, - 1) , 
[ 44J+ 1 

and 

J+j_ = {Q, ,l)_ix; y = l)...) N}. 

The G: are Fermi operators given by 

Gz = cos O,FJ - i sin 84F-4, 

where 

F,’ = N-’ $ ei4rr~1(-o~) + ($ + iu,‘). (A.lO) 

The transformation angle 0 is specified by 

26 = 6*(W) - w + x, 

64.6) 

(A.7) 

w-9 

(A.9) 

(A.ll) 

where 

sinh y cos 6* = sinh 2K, cash 2K: - cash 2K, sinh 2K,* cos w , 

sinh y sin 6* = sinh 2K: sin cc), (A.12) 

with 

cash y = cash 2K: cash 2K, - sinh 2K: sinh 2K, cos w , (A.13) 

the positive real root being taken for real cc). The functions y and 6* were defined 
by Onsage?). Finally, the operators Q, are the projectors 

Q, = 30 + C-l)“), (A.14) 

with 

(- 1)” = 4 (-$). (A.15) 
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When K: < Kz (low-temperature region), the spectrum of (A.5) has an 
asymptotically doubly-degenerate ground state; thus 

VI@,,) = A* I@*>, (A.16) 

where 

(-l)“l@,) = + I@&> (A.17) 

and 

A- 
- = 1 - A(N) emvx, 
A+ 

1c = 2(K, - K,*), (A.18) 

as shown in appendix B, because y(w) is periodic with nearest singularities to the 
real axis at 

cu = *ix + 2nx, n =O, +l,.... 

Let I@*),, be defined by 

lCD+)0 = lim I@*). 
K,+m 

Then because 

(-1)“Ik) = IT>, (A.20) 

(we consider N even), one has 

I@*)0 = fml+) k I->), 

(A.19) 

(A.21) 

bearing in mind (A.17). Now 

I@*> = K(+)glj*(~~~ 8, + i sin ~,F_+,F,+) IO>, 

where 

(A.22) 

KC+/-) = l/(Fo’ + Fo), (A.23) 

and 10) is the “vacuum” for the Fq, i.e., F, IO) = 0 for all q. It now follows 
directly from the spectral decomposition of V in (A.4) and the above remarks that 

2 CM + -m> PI = 1 - p(A_/A+)“-’ + O(e-ZY’o’H) . 

z(M++m,B> 1 + p (n_/rl+)“-’ + O(e-2y’o’H) ’ 
(A.24) 
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where [see (A. 1 l), (A. 19) and (A.22)] 

P = qps w* (4 I I-I cos w* (41. (A.25) 
aEJ+ 

We have 

p = (1 + B(N) emxN), (A.26) 

where B(N) has a power dependence on N, because (see appendix B) cos [&J* (o)] 
has period 2x and nearest singularities to the real o axis at 

cc) = fix + 2nx, n =O, fl,.... (A.27) 

For large N eq. (A.24) behaves as 

z(M+-PhP> 
z(M++(QhB) 

N + (AH - B) ewxN + 0(e-2Y(o’“). (A.28) 

If the limit as N + co in (5.1) is taken over the sequence of cylinders with H = [NJ], 
6 > 1, then the second term in (A.28) vanishes, giving 

z’ = -2(K, - K,*), (A.29a) 

in agreement with the Onsager result. For J(u) = J(h) = +, this gives 

r’ = -28 - log tanh (+p), (A.29b) 

as in formula (5.2). 

2. Incremental free energies. If there is a vertical ladder length r of reversed 
horizontal bonds on the torus 52 of section 5, then 

(A.30) 

Using the remarks of section 5, and a result of ref. 7, one makes a spectral de- 
composition of V( ->‘, obtaining immediately 

7x = -y(O), (A.31) 

in agreement with (A.28) (on interchange of K1 and KZ). This answer is essentially 
independent of the way the limit on the torus is performed, and was first obtained 
by Fisher and Ferdinand5) using a pfaffian method. 
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APPENDIX B 

In this appendix we estimate the behaviour of L/n+ and ,U for large N. From 
(A.7) and (A.25) we have 

A-/A+ = exp +‘z(- 1)jy (~;jjN), 03.1) 
j=l 

and 

p = exp 4,; (- l)j log [l + cos 8* (xj/N)]. 03.2) 

From (A.13) the following expressions for S* and y as functions of z can be 
derived: 

e id’ (z - a) (z - b-l) + 

(z - a-‘) (z - b) ’ 

tanh $ = 
0 ( 

(z - a) (z - a- 1) + 

(z - b) (z - b-l) ’ 

(J3.3) 

where a = tanh Kf coth K2, b = tanh Kf tanh K2 and the branches are such 
that e’“’ = 1, tanh (3~) 2 0 for z = - 1. We thus see that y has branch points 
at z = a*‘, b*l. For low temperatures (K: < K2, 0 < b < a < 1) it can be 
shown that cos 6” > - 1, so that log (1 + cos S*) has these branch points as well. 
Thus we are led to investigate sums of the form 

Us) = ‘c” (- 1Y g (exp (xY/N)), 
j=l 

(B.4) 

where g(z) satisfies the conditions 

(i) g(z) = g (I/z), 03.5) 

(ii) g(z) is analytic in the annulus D given by 

a < lzl <a-l (B.6) 

and, in fact, in the z plane cut on (b, a) and (a- l, b- ‘). 

We introduce the sequence of functions 

* I;,(z) = z”/(z” - 1) (z” + l), 03.7) 

which have simple poles at the points 

z, = exp (+j/N), j = 1, . . . . 2N, 03.8) 
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with residues given by 

R(zj) = (- I)’ zj/2N. (B.9) 

Let C* be simple closed curves around the origin in the domains D n {z >< l}. 
Then from (B.4), S,(g) is given by 

~NSN k> = $ F*(z) g(z) d”, 
Z 

which simplifies using (B.5) to 

NSN (id = - 5 
x P F&l g(z) +, 

C- 

OK 

(B. 10) 

(B.11) 

(B. 12) 

where d [g(x)]is the jump in g(z) across the cut. 
The behaviour of (B.l) and (B.2) may be estimated by examining y and 

log (1 + cos 6*) near z = a; from (B.3) we have 

A [r(x)1 = (a - x)*, A [log (1 + cos 6*) (x)] z constant. (B.13) 

Thus (B.l) and (B.2) give 

,u(A-/A+)~ = [A(N)H - B(N)]a* + O(d*), 

where A(N) and B(N) have a power-law dependence on N, and A(N) H-B(N) 

does not vanish when H = [N6], 6 > 1. 
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