SOME REMARKS ON ISING-SPIN SYSTEMS*

G. GALLAVOTTI and J. L. LEBOWITZ#

Belfer Graduate School of Science, Yeshiva University, New York, N.Y. 10033, USA

Received 18 Juni 1973

Synopsis

We show that: (a) the free energy and correlation functions of the two-dimensional Ising-spin system with nearest-neighbour ferromagnetic interactions, remain infinitely differentiable with respect to β and h as $h \to 0^{\pm}$ for $\beta > \beta_c$ (where β_c is the reciprocal of the critical temperature) and, (b) the equilibrium equations for the correlation functions of Ising-spin systems may admit a non-physical solution even in the region, $\beta < \beta_c$, where they are known to have a unique physical solution.

1. Proof of (a). Consider an Ising-spin system with ferromagnetic pair interactions in a domain $\Lambda \subset Z^{\nu}$. We shall denote by '+' the boundary condition in which all spins in $Z^{\nu}\backslash \Lambda$ are +1. Let $u_2(x, y; \beta, h, \Lambda, +)$ be the pair correlation: $\langle \sigma_x \sigma_y \rangle - \langle \sigma_x \rangle \langle \sigma_y \rangle$ for this system, $x, y \in \Lambda$. The argument used in ref. 1 (employing the Griffiths, Hurst and Sherman inequality²), then shows that when the magnetic field h is in the up direction then

$$u_2(x, y; \beta, h, \Lambda, +) \le u_2(x, y; \beta, h, +) \le u_2(x, y; \beta, h = 0, +),$$
 (1)

where $u_2(x, y; \beta, h, +) = \lim_{\Lambda \to \infty} u_2(x, y; \beta, h, \Lambda, +)$, the limit being approached monotonically.

We now observe that for the two-dimensional system, v=2, with nearest-neighbour attractive interactions, it was shown in ref. 4 that in the infinite-volume limit $\langle \sigma_x \sigma_y \rangle_+$ (β) = $\langle \sigma_x \sigma_y \rangle_p$ (β); here p indicates periodic (or cylindrical) boundary conditions, and the equality holds for all β even when h=0. (For $h\neq 0$ or $\beta < \beta_c$, the result was already known before³).) Furthermore in ref. 4 it is also shown that $\lim_{|x-y|\to\infty} \langle \sigma_x \sigma_y \rangle_p = \langle \sigma_x \rangle_+^2$. It follows then from the explicit compu-

^{*} Supported in part by the A.F.O.S.R. Grant #73-2420.

^{*} Permanent address: Istituto di Fisica Teorica dell'Università Mostra d'Oltremare pad. 19 – 80125 Napoli. Lavoro eseguito nell'ambito di un programma presentato al C.N.R. (G.N.F.M.).

tation of Wu⁵) that the right side of (1) has an exponential decay¹):

$$u_2(x, y; \beta, h = 0, +) \le \text{const. exp} - K|x - y|$$
 (2)

with K > 0 for $\beta > \beta_c$. This in turn implies infinite differentiability by the arguments given in ref. 1. (We note here that Martin-Löf obtained the bound (2) by direct computation and communicated it to us prior to our result.)

Actually in ref. 5 the author deals with the case when x and y are on the same horizontal or vertical line; the general case follows from a careful examination of the spectrum of the transfer matrix and it is particularly easy to obtain if one is content with a weak estimation of the form

$$|\langle \sigma_x \sigma_y \rangle - \langle \sigma_x \rangle_+^2| \le \text{const. exp } -\frac{1}{2}K|x-y|,$$

where K is the horizontal or vertical correlation length.

2. Proof of (b). To prove (b) we consider a one-dimensional system with nearest-neighbour interaction, $\Lambda = [-L, L]$, and 'open' boundary conditions corresponding to no interactions with spins outside Λ . The hamiltonian of this

system, for
$$h=0$$
, then is $H_0(\sigma)= \begin{array}{cc} L-1 \\ -\sum\limits_{L\equiv -1} & \sigma_i\sigma_{i+1} \text{. Let } H_i(\sigma)=H_0(\sigma)-(i\pi/2\beta) \end{array}$

 \times $(\sigma_{-L} + \sigma_L)$. We shall denote with a subscript L, 0 or L, i the average obtained by using $e^{-\beta H_0}$ or $e^{-\beta H_i}$ as weights and by a subscript 0 or i we shall mean the limit as $L \to \infty$, of the corresponding quantities with subscript L, 0 or L, i.

If $x_1 < x_2 < \cdots < x_m$ a simple computation leads to the following result

$$\langle \sigma_{x_1} \cdots \sigma_{x_{2n+1}} \rangle_i = 0 = \langle \sigma_{x_1} \cdots \sigma_{x_{2n+1}} \rangle_0, \tag{3}$$

$$\langle \sigma_{x_1} \cdots \sigma_{x_{2n}} \rangle_i = \prod_{j=1}^{2n-1} \langle \sigma_{x_j} \sigma_{x_{j+1}} \rangle_i,$$

$$\langle \sigma_{x_1} \cdots \sigma_{x_{2n}} \rangle_0 = \prod_{j=1}^{2n-1} \langle \sigma_{x_j} \sigma_{x_{j+1}} \rangle_0. \tag{4}$$

Furthermore it is easy to check that:

$$\langle \sigma_x \sigma_y \rangle_i \equiv \lim_{L \to \infty} \frac{\langle \sigma_x \sigma_y \sigma_{-L} \sigma_L \rangle_{0, L}}{\langle \sigma_{-L} \sigma_L \rangle_{0, L}} = \frac{1}{\langle \sigma_x \sigma_y \rangle_0}.$$
 (5)

hence $\langle \sigma_x \sigma_y \rangle_i > 1$ and therefore $\langle \sigma_x \sigma_y \rangle_i$ cannot correspond to a physically acceptable state. It is, however, easy to see from the definition

$$\langle \sigma_{x}\sigma_{y}\cdots\rangle_{i} = \lim_{L\to\infty} \frac{\sum_{\sigma} (\sigma_{x}\sigma_{y}\cdots) \exp{-\beta H_{i}(\sigma)}}{\sum_{\sigma} \exp{-\beta H_{i}(\sigma)}}$$
 (6)

that the $\langle \sigma_X \rangle_i$ define a family of local distributions $f_A(X)^{\dagger}$ which verify the equilibrium equations (6) as well as the compatibility and normalization conditions (7) that they would have to satisfy if they came from a probability measure on the space of the spin configurations.

Notice that, since $\langle \sigma_x \sigma_y \rangle_0$ $(\beta) = (\operatorname{th} \beta)^{|x-y|}$ the functions $\langle \sigma_x \sigma_y \rangle_i$ (β) are singular around $\beta = 0$ which explains why they cannot be obtained by the usual perturbative expansions around $\beta = 0$.

It could be directly checked that the Kirkwood-Salsburg equations in zero field are, in general, invariant under the transformation $J_{ij} \to J_{ij} + i\pi/2\beta$ (this is because only exp $(-4\beta J_{ij})$ enters into the KS equations) and this remark, applied to our case, could be used to provide a simple direct proof that the correlation functions $\langle \sigma_X \rangle_i$ are a solution to the KS equations [one merely notices that th $(\beta + \frac{1}{2}i\pi) = 1/th\beta$].

REFERENCES

- 1) Lebowitz, J.L., Commun. math. Phys. 28 (1972) 313.
- 2) Griffiths, R.B., Hurst, C.A. and Sherman, S., J. math. Phys. 11 (1970) 790.
- 3) Lebowitz, J.L. and Martin-Löf, A., Commun. math. Phys. 25 (1973) 272
- 4) Benethin, P., Gallavotti, G., Jona, G. and Stella, A., Commun. math. Phys. 30 (1973) 45.
- 5) Wu, T.T., Phys. Rev. 149 (1965) 380.
- 6) Lanford, O. and Ruelle, D., Commun. math. Phys. 13 (1969) 194.
- 7) Ruelle, D., Statistical Mechanics, Benjamin (New York, 1969) p. 169.

$$f_A(X) = \left\langle \prod_{\xi \in X} \left(\frac{\sigma + 1}{2} \right) \prod_{\xi \in A/X} \left(\frac{1 - \sigma_{\xi}}{2} \right) \right\rangle_i. \quad \text{Also } \left\langle \sigma_X \right\rangle = \left\langle \prod_{i=1}^P \sigma_{x_i} \right\rangle.$$

^{*} If $X = (x_1, x_2, ..., x_p)$ the functions $f_A(X)$ are the "probabilities" for finding, inside A, spins up in the points $x_1 ... x_p$ and spins down in the remaning points; *i.e.*,